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Prior Work on Theoretical Analysis of Meta-Learning

In learning theory, the most often used lower bounds are distribution-free or
problem independent

If the class of meta-distributions is sufficiently rich, the bounds simply tell us that
the best meta-learner is competitive with the best “standard learner“

For example, Lucas et al. (2020) gave a worst-case lower bound
Ω(d/((2r)−dM + m)) for parameter identification which reduces to the standard
bound on linear regression as r →∞

r ≥ 1 is the radius of the ball that contains the parameters
M is the total number of data points in the training tasks
m is the number of data points in the training set of the target task

This work: bounds that take into account task-relatedness via dependence on the
parameters of the meta-distribution.
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Problem Setting: Mixed Linear Regression

Let the i-th task be parameterized by
θi ∼ N (α,Σ):

Yi = Xiθi + εi ∼ N (Xiθi , σ
2I ), (1)

and inputs Xi ∈ Rmi×d be deterministic.

We can derive the marginal distribution over Y =
[
Y>1 . . . Y>n

]>
,

Y ∼ N (Ψα,K ), (2)

where Ψ =
[
X>1 . . . X>n

]>
, X = block diag(X1, . . . ,Xn), and

K = X (In ⊗Σ)X> + σ2I .

3 / 13



Bounding Squared Error

We will study learning algorithms with performance measured by quadratic loss of
adapting to the last task:

L(A, x) = E[(Y −A(D, x)))2]. (3)

where Y = xTθn + ε ∼ N (xTθn, σ
2).

The risk decomposes into posterior mean estimation and posterior variance:

L(A, x) = E
[
(E[Y |D]−A(D, x))2

]
+ E[V[Y |D]] (4)

Letting T = V[θn|D] =
(
Σ−1 + σ−2X>n Xn

)−1
we have

E[Y |D] = x>T
(
Σ−1α+ σ−2X>n Yn

)
(5)

V[Y |D] = x>T x + σ2 (6)
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Matching Lower and Upper Bounds

Assume known covariance structure (σ2,Σ)

For any estimator A(D, x) we have the following lower bound which depends on
the parameters of the statistical model

L(A, x) ≥ 1

16
√
e
x>Mx + x>T x + σ2, (7)

where M = T Σ−1(Ψ>K−1Ψ)−1Σ−1T
We also provide special cases of this lower bound in the paper and compare them
with prior work

For A(D, x) matching the form of E[Y |D] with
α̂ = α̂MLE = (Ψ>K−1Ψ)−1Ψ>K−1Y we have

L(A, x) = x>Mx + x>T x + σ2 (8)

Optimal A(D, x) matches the solution of a weighted version of biased regression
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Special Cases of Our Lower Bounds

If the input covariance for the i-th task is mi
d I and Σ = τ2I we get

L(A, x)− σ2

σ2
≥ Hτ2

16
√
e
· d2σ2

n(τ2mn + dσ2)2
+

dτ2

τ2mn + dσ2
(9)

→
(
mn

d
+
σ2

τ2

)−1
as n→∞, (10)

where Hz is the harmonic mean of the sequence (z + dσ2/mi )
n
i=1.

If the input covariance for the i-th task is mi
d I and Σ is an arbitrary rank s ≤ d

positive semi-definite matrix

L(A, x)− σ2

σ2
≥ Hλs

16
√
e
· sdσ2

n(λ1mn + dσ2)2
+

sλs
λsmn + dσ2

, (11)

where λ1 > · · · > λs > 0 are the eigenvalues of Σ.
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Practical Adaptation via EM Algorithm

Algorithm 1 EM procedure to estimate (α, σ2,Σ)

Require: Initial parameter estimates Ê1 = (α̂1, σ̂
2
1 , Σ̂1)

Ensure: Final parameter estimates Êt = (α̂t , σ̂
2
t , Σ̂t)

1: T̂ 1,i ← 0, µ̂1,i ← 0 i ∈ {1, . . . , n}
2: repeat
3: for i = 1, . . . , n do . E-step

4: T̂ t,i ←
(
Σ̂−1

t + σ̂−2
t X>i Xi

)−1

5: µ̂t,i ← T̂ t,i

(
Σ̂−1

t α̂t + σ̂−2
t X>i Yi

)
6: end for
7: α̂t ← 1

n

∑n
i=1 µ̂t,i . M-step

8: Σ̂t ← 1
n

∑n
i=1

(
T̂ t,i + (µ̂t,i − α̂t)(µ̂t,i − α̂t)

>
)

9: σ̂2
t ← 1

n

∑n
i=1

1
mi

(∑mi
j=1(Yi,j − µ̂T

i xi,j)2 + tr
(
Xi T̂ t,iX>i

))
10: t ← t + 1
11: until Convergence

At the end use plug-in estimate
of θ̂n:

θ̂n = T̂
(
Σ̂−1α̂+ σ̂−2XT

n Yn

)
and predict A(D, x) = θ̂Tn x .
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Fourier Experiments

u ∼ Unif [−5, 5]

xj =


sin
(
5−1πju

)
, if 1 ≤ j ≤ 5

cos
(
5−1π(j − 5)u

)
, if 6 ≤ j ≤ 10

1, if j = 11
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Spherical Synthetic Experiments

x is sampled from a unit sphere with d = 42

Figure: Spherical Synthetic Experiment Results
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School Data Experiment

Predicting exam scores for students from different schools with d = 27. Each school
could be thought of as a separate meta-learning task.

Figure: School Data Experiment Results
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Subspace Estimation

EM Learner can estimate subspace matrix by zeroing out the smallest eigenvalues of Σ̂.

Figure: Comparison with the Method of Moments subspace estimation algorithm of Tripuraneni
et al. (2020) in the same setting as theirs.
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Summary of the Contributions

Derived, up to a universal constant, matching lower and upper bounds for the
studied problem

Showed that the upper bound holds for the weighted version of biased regularized
regression

Proposed to use the EM algorithm for the case of unknown covariances and
derived analytic expressions for the two steps of the algorithm

Experimentally showed that EM attains the lower bound for sufficient number of
tasks and that it is competitive as a representation learner.
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