1,2

Mikhail Konobeev! Ilja Kuzborskij> Csaba Szepesvari

LUniversity of Alberta

2DeepMind



Prior Work on Theoretical Analysis of Meta-Learning

@ In learning theory, the most often used lower bounds are distribution-free or
problem independent

@ If the class of meta-distributions is sufficiently rich, the bounds simply tell us that
the best meta-learner is competitive with the best “standard learner"

@ For example, Lucas et al. (2020) gave a worst-case lower bound
Q(d/((2r)=¢M + m)) for parameter identification which reduces to the standard
bound on linear regression as r — co

e r > 1 is the radius of the ball that contains the parameters
o M is the total number of data points in the training tasks
e m is the number of data points in the training set of the target task
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the best meta-learner is competitive with the best “standard learner"

@ For example, Lucas et al. (2020) gave a worst-case lower bound
Q(d/((2r)=¢M + m)) for parameter identification which reduces to the standard
bound on linear regression as r — co

e r > 1 is the radius of the ball that contains the parameters
o M is the total number of data points in the training tasks
e m is the number of data points in the training set of the target task

This work: bounds that take into account task-relatedness via dependence on the
parameters of the meta-distribution.
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Problem Setting: Mixed Linear Regression

Let the i-th task be parameterized by
0; ~ N(a,X):

N(a,2)

Y,-:X,'e,'-i-E,'NN(Xiehazl)7 (1)

and inputs X; € R™*9 be deterministic.

We can derive the marginal distribution over Y = [Y;" ... YnT]T,
Y ~ N (%o, K), ©)
where @ = [X[ ... X]T]", X =block diag(Xi,...,X,), and

K=X(l,®X)X" +02l.
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Bounding Squared Error

@ We will study learning algorithms with performance measured by quadratic loss of
adapting to the last task:

L(A,x) = E[(Y — A(D, x)))’]. (3)

where Y = x70, + ¢~ N(x78,,0?).
@ The risk decomposes into posterior mean estimation and posterior variance:

L(A, x) =E |(E[Y|D] — A(D, x))?| + E[V[Y|D]] (4)
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L(A,x) = E[(Y — A(D, x)))’]. (3)

where Y = x70, + ¢~ N(x78,,0?).
@ The risk decomposes into posterior mean estimation and posterior variance:

L(A,x)=E [(E[yu)] — A(D, x))ﬂ +E[V[Y|D]] (4)

o Letting T = V[0,|D] = (X! + 0*2X,7TX,,)71 we have

E[Y[D] = x" T (2—1a +o2X] Y,,> (5)
V[Y|D] = x"Tx + o2 (6)
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Matching Lower and Upper Bounds

@ Assume known covariance structure (02, %)

e For any estimator A(D, x) we have the following lower bound which depends on
the parameters of the statistical model

1
L(A,x) > NG

where M = TS 1 (O TK1w)-1n-17
@ We also provide special cases of this lower bound in the paper and compare them
with prior work

x"Mx 4+ x"Tx+ o2, (7)
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Matching Lower and Upper Bounds

@ Assume known covariance structure (02, %)

e For any estimator A(D, x) we have the following lower bound which depends on
the parameters of the statistical model

1
LA x) = = 7
where M = TS 1 (O TK1w)-1n-17
@ We also provide special cases of this lower bound in the paper and compare them
with prior work
e For A(D, x) matching the form of E[Y|D] with
& =abme=(PTK1W) W TK-1Y we have

x"Mx 4+ x"Tx+ o2, (7)

L(A,x)=x"Mx+x"Tx+0° (8)

e Optimal A(D, x) matches the solution of a weighted version of biased regression

5/13



Special Cases of Our Lower Bounds

o If the input covariance for the i-th task is 7/ and 3 = 721 we get

L(A, x)— o2 H.> d?o? dr?
2 2 ’ 2 22 T 2 2 (9)
o 16v/e n(m?>mp+ do?)?  m2m,+ do
o\ —1
— (r:/n + ;) as n — oo, (10)

where H, is the harmonic mean of the sequence (z + do?/m;)"_;.

o If the input covariance for the i-th task is 7/ and X is an arbitrary rank s < d
positive semi-definite matrix

L(A, x)—0o? > Hy, sdo? N sAs ’ (1)
o2 16v/e n(Ai1m,+ do?)2  A\gm, + do?

where A1 > --- > A; > 0 are the eigenvalues of 3.
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Practical Adaptation via EM Algorithm

Algorithm 1 EM procedure to estimate (ca, 02, X)

Require: Initial parameter estimates & = (&1
Ensure: Final parameter estimates & = (&, 0
1: le,'<—07 ﬂl,,'<—0 ie{l,...,n}
2: repeat
3: fori=1,...,ndo
2 -1 | A2y T -t
4. Tt,i — (Et + o, X,- X,')
5: fre < Te (2;1@ o Y,-)
6: end for
7 Qo = 3 D0 e
8 S 1 (Tui+ (A
9: Ut “;Zi:lﬁ,(zmz (Y

10:

t—t+1

11: until Convergence

0—1721)
taz )

> E-step

> M-step

— Gue)(foei — &t)T)
— Al xi,)? +tr (x,ﬁ'tﬁ,-xﬁ))

At the end use plug-in estimate
of 8,:

A+ 672X Y,,)

and predict A(D, x) = ] x

7/13



Fourier Experiments

u ~ Unif[~5, 5]
sin (57 mju) , if1<j<5 st A\
Xj = { cos (5_17r(j - 5)u) , f6<;<10
1, ifj=11
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Spherical Synthetic Experiments

x is sampled from a unit sphere with d = 42
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30 | —— Linear Regression (Task)
{ —— Known Covariance Lower Bound
9 w 401
EES 2 \
L " # 3 \
5 20 L —
T 10 T T T
5 50 s 100 125 150 175 200 F-3 50 15 100 125 150 175 200

Figure: Spherical Synthetic Experiment Results
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School Data Experiment

Predicting exam scores for students from different schools with d = 27. Each school

could be thought of as a separate meta-learning task.
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Figure: School Data Experiment Results
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Subspace Estimation

EM Learner can estimate subspace matrix by zeroing out the smallest eigenvalues of )3}
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Figure: Comparison with the Method of Moments subspace estimation algorithm of Tripuraneni
et al. (2020) in the same setting as theirs.
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Summary of the Contributions

@ Derived, up to a universal constant, matching lower and upper bounds for the
studied problem

@ Showed that the upper bound holds for the weighted version of biased regularized
regression

@ Proposed to use the EM algorithm for the case of unknown covariances and
derived analytic expressions for the two steps of the algorithm

@ Experimentally showed that EM attains the lower bound for sufficient number of
tasks and that it is competitive as a representation learner.
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