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Deep Learning Revolution

Deep learning models:

I often provide the best performance due to their large capacity

challenging to train

I are complex black-box systems based on non-convex optimization

hard to interpret what the model is actually learning
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Problem Formulation

Model: Notation:

Input

Output

X ∈ Rn×d : Data matrix

y ∈ Rn : Label vector

L(·, ·) : Convex loss function

R(·) : Regularization function

β > 0 : Regularization coefficient

θ : All parameters

l and k : Layer and sub-network indices

Wlk ∈ Rml−1×ml : Weights

fθ,k(X) :=
(
(XW1k)+ . . .w(L−1)k

)
+
wLk

Optimization problem:

min
θ
L
(

K∑
k=1

fθ,k(X), y

)
+ β

K∑
k=1

Rk(θ)

2



Prior Work

I (Haeffele and Vidal, 2017) provided conditions to guarantee that

each local minimum is a global optimum

require all local minima to be rank-deficient

not valid for common regularization such as weight decay

# of sub-networks (K) needs to be too large

I (Zhang et al., 2019) proved strong duality for deep linear networks

valid only for hinge loss and linear networks

require the data matrix to be included in the regularization(thus, not

valid for weight decay)

require assumptions on the regularization parameter β

I (Pilanci and Ergen, 2020) introduced convex representations for

ReLU networks

valid only for two-layer networks
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Convex Duality for Deep Neural Networks

Lemma

The following problems are equivalent

P∗ := min
θ∈Θ
L
(

K∑
k=1

fθ,k(X), y

)
+
β

2

K∑
k=1

L∑
l=L−1

‖Wlk‖2
F = min

θ∈Θp

L
(

K∑
k=1

fθ,k(X), y

)
+ β

K∑
k=1

|wLk |,

where Θp := {θ ∈ Θ : ‖Wlk‖F ≤ 1,∀l ∈ [L− 2], ‖w(L−1)k‖2 ≤ 1,∀k}.

Dual problem with respect to wLk :

P∗ ≥ D∗ := max
v
−L∗(v) s.t. max

θ∈Θp

∣∣∣vT ((XW1)+ . . .w(L−1)

)
+

∣∣∣ ≤ β,
where L∗ is the Fenchel conjugate function

L∗(v) := max
z

zTv − L(z, y)

Our contribution: We first prove strong duality, i.e., P∗ = D∗ and then

derive convex formulations
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Convex Program for Three-layer Networks

Theorem

The non-convex training problem can be equivalently stated as

min
w,w′∈C

1

2

∥∥∥X̃ (w′ −w)− y
∥∥∥2

2
+ β (‖w‖2,1 + ‖w′‖2,1)

where ‖ · ‖2,1 is d dimensional group norm: ‖w‖2,1 :=
∑P

i=1 ‖wi‖2

X̃ :=

[
X̃s 0

0 X̃s

]
, X̃s :=

[
D1X D2X . . . DPX

]
.

Diagonal matrices (D):

(Xw)+ = DXw ⇐⇒
DXw ≥ 0

(In −D)Xw ≤ 0
⇐⇒ (2D− In)Xw ≥ 0,

where D ∈ Rn×n is a diagonal matrix of zeros and ones, i.e., Dii ∈ {0, 1}
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Training Complexity

Architecture with three sub-networks (K = 3) and ReLU layers (L = 3):

Input

Output

=

Input

1 0 0

0 0 0

0 0 0

×

0 0 0

0 1 0

0 0 0

×

. . . 1 0 0

0 1 0

0 0 1

×

Output

Non-convex Convex

Convex program can be globally optimized by standard interior-point

solvers with complexity O(poly(n, d)) 6



Numerical Results

(a) CIFAR-10 (b) Fashion-MNIST

Figure 1: Test accuracy of a three-layer architecture trained using the

non-convex formulation and the convex program
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Takeaways and Open Problems

I Three-layer ReLU networks can be trained via convex optimization

don’t need hyperparameter search, e.g., learning rate and

initialization

don’t need heuristics such as dropout

I Convex problem has polynomial-time complexity with respect to the

number of samples n and the feature dimension d

I Limitations:

convex representation is restricted to three layers (two ReLU layers)

we put unit `2-norm constraints on the first L− 2 layer weights

(weight decay may not be the right way to regularize?)

when the data matrix is full rank, our approach has exponential-time

complexity, which is unavoidable unless P = NP
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