# Global Optimality Beyond Two Layers: Training Deep ReLU Networks via Convex Programs

**ICML 2021** 

Tolga Ergen & Mert Pilanci July 19, 2021

Stanford University



# **Deep Learning Revolution**



# **Deep Learning Revolution**



### Deep learning models:

- often provide the best performance due to their large capacity
  - challenging to train

# **Deep Learning Revolution**



### Deep learning models:

- often provide the best performance due to their large capacity
  - challenging to train
- ▶ are complex black-box systems based on non-convex optimization
  - hard to interpret what the model is actually learning

### **Problem Formulation**

### Model:



### **Notation:**

 $\mathbf{X} \in \mathbb{R}^{n imes d}$  : Data matrix

 $\mathbf{y} \in \mathbb{R}^n$  : Label vector

 $\mathcal{L}(\cdot,\cdot)$  : Convex loss function

 $\mathcal{R}(\cdot)$  : Regularization function

 $\beta>0$  : Regularization coefficient

 $\boldsymbol{\theta}$  : All parameters

 $\emph{I}$  and  $\emph{k}$ : Layer and sub-network indices

 $\mathbf{W}_{lk} \in \mathbb{R}^{m_{l-1} imes m_l}$  : Weights

$$f_{\theta,k}(\mathbf{X}) := \left( \left( \mathbf{X} \mathbf{W}_{1k} \right)_+ \ldots \mathbf{w}_{(L-1)k} \right)_+ w_{Lk}$$

### **Optimization problem:**

$$\min_{\boldsymbol{\theta}} \mathcal{L}\left(\sum_{k=1}^K f_{\boldsymbol{\theta},k}(\mathbf{X}), \mathbf{y}\right) + \beta \sum_{k=1}^K \mathcal{R}_k(\boldsymbol{\theta})$$

- ► (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient

- ► (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient
  - not valid for common regularization such as weight decay

- ► (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient
  - not valid for common regularization such as weight decay
  - $\blacksquare$  # of sub-networks (K) needs to be too large

- ► (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient
  - not valid for common regularization such as weight decay
  - # of sub-networks (K) needs to be too large
- ▶ (Zhang et al., 2019) proved strong duality for deep linear networks
  - valid only for hinge loss and linear networks

- (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient
  - not valid for common regularization such as weight decay
  - $\blacksquare$  # of sub-networks (K) needs to be too large
- ▶ (Zhang et al., 2019) proved strong duality for deep linear networks
  - valid only for hinge loss and linear networks
  - require the data matrix to be included in the regularization(thus, not valid for weight decay)

- ► (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient
  - not valid for common regularization such as weight decay
  - # of sub-networks (K) needs to be too large
- ▶ (Zhang et al., 2019) proved strong duality for deep linear networks
  - valid only for hinge loss and linear networks
  - require the data matrix to be included in the regularization(thus, not valid for weight decay)
  - lacktriangleright require assumptions on the regularization parameter eta

- ► (Haeffele and Vidal, 2017) provided conditions to guarantee that each local minimum is a global optimum
  - require all local minima to be rank-deficient
  - not valid for common regularization such as weight decay
  - # of sub-networks (K) needs to be too large
- ▶ (Zhang et al., 2019) proved strong duality for deep linear networks
  - valid only for hinge loss and linear networks
  - require the data matrix to be included in the regularization(thus, not valid for weight decay)
  - lacktriangleright require assumptions on the regularization parameter eta
- (Pilanci and Ergen, 2020) introduced convex representations for ReLU networks
  - valid only for two-layer networks

# **Convex Duality for Deep Neural Networks**

#### Lemma

The following problems are equivalent

$$P^* := \min_{\theta \in \Theta} \mathcal{L}\left(\sum_{k=1}^K f_{\theta,k}(\mathbf{X}), \mathbf{y}\right) + \frac{\beta}{2} \sum_{k=1}^K \sum_{l=L-1}^L \|\mathbf{W}_{lk}\|_F^2 = \min_{\theta \in \Theta_p} \mathcal{L}\left(\sum_{k=1}^K f_{\theta,k}(\mathbf{X}), \mathbf{y}\right) + \beta \sum_{k=1}^K |w_{Lk}|,$$

$$\textit{where } \Theta_{\textit{p}} := \{\theta \in \Theta: \| \mathbf{W}_{\textit{Ik}} \|_{\textit{F}} \leq 1, \forall \textit{I} \in [\textit{L}-2], \ \| \mathbf{w}_{(\textit{L}-1)\textit{k}} \|_2 \leq 1, \forall \textit{k} \}.$$

# **Convex Duality for Deep Neural Networks**

#### Lemma

The following problems are equivalent

$$P^* := \min_{\theta \in \Theta} \mathcal{L}\left(\sum_{k=1}^K f_{\theta,k}(\mathbf{X}), \mathbf{y}\right) + \frac{\beta}{2} \sum_{k=1}^K \sum_{l=L-1}^L \|\mathbf{W}_{lk}\|_F^2 = \min_{\theta \in \Theta_\rho} \mathcal{L}\left(\sum_{k=1}^K f_{\theta,k}(\mathbf{X}), \mathbf{y}\right) + \beta \sum_{k=1}^K |w_{Lk}|,$$

where 
$$\Theta_p := \{\theta \in \Theta: \|\mathbf{W}_{lk}\|_F \leq 1, \forall l \in [L-2], \ \|\mathbf{w}_{(L-1)k}\|_2 \leq 1, \forall k\}.$$

Dual problem with respect to  $w_{Lk}$ :

$$P^* \geq D^* := \max_{\mathbf{v}} - \mathcal{L}^*(\mathbf{v}) \text{ s.t. } \max_{\theta \in \Theta_p} \left| \mathbf{v}^T \left( (\mathbf{X} \mathbf{W}_1)_+ \dots \mathbf{w}_{(L-1)} \right)_+ \right| \leq \beta,$$

where  $\mathcal{L}^*$  is the Fenchel conjugate function

$$\mathcal{L}^*(\mathbf{v}) := \max_{\mathbf{z}} \mathbf{z}^T \mathbf{v} - \mathcal{L}(\mathbf{z}, \mathbf{y})$$

**Our contribution:** We first prove strong duality, i.e.,  $P^* = D^*$  and then derive convex formulations

# **Convex Program for Three-layer Networks**

#### **Theorem**

The non-convex training problem can be equivalently stated as

$$\min_{\mathbf{w}, \mathbf{w}' \in \mathcal{C}} \frac{1}{2} \left\| \tilde{\mathbf{X}} \left( \mathbf{w}' - \mathbf{w} \right) - \mathbf{y} \right\|_2^2 + \beta \left( \| \mathbf{w} \|_{2,1} + \| \mathbf{w}' \|_{2,1} \right)$$

where  $\|\cdot\|_{2,1}$  is d dimensional group norm:  $\|\mathbf{w}\|_{2,1} := \sum_{i=1}^P \|\mathbf{w}_i\|_2$ 

$$\tilde{\mathbf{X}} := egin{bmatrix} \tilde{\mathbf{X}}_s & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{X}}_s \end{bmatrix}, \quad \tilde{\mathbf{X}}_s := egin{bmatrix} \mathbf{D}_1 \mathbf{X} & \mathbf{D}_2 \mathbf{X} & \dots & \mathbf{D}_P \mathbf{X} \end{bmatrix}.$$

5

# Convex Program for Three-layer Networks

#### **Theorem**

The non-convex training problem can be equivalently stated as

$$\min_{\mathbf{w}, \mathbf{w}' \in \mathcal{C}} \frac{1}{2} \left\| \tilde{\mathbf{X}} \left( \mathbf{w}' - \mathbf{w} \right) - \mathbf{y} \right\|_2^2 + \beta \left( \| \mathbf{w} \|_{2,1} + \| \mathbf{w}' \|_{2,1} \right)$$

where  $\|\cdot\|_{2,1}$  is d dimensional group norm:  $\|\mathbf{w}\|_{2,1} := \sum_{i=1}^P \|\mathbf{w}_i\|_2$ 

$$\tilde{\mathbf{X}} := egin{bmatrix} \tilde{\mathbf{X}}_s & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{X}}_s \end{bmatrix}, \quad \tilde{\mathbf{X}}_s := egin{bmatrix} \mathbf{D}_1 \mathbf{X} & \mathbf{D}_2 \mathbf{X} & \dots & \mathbf{D}_P \mathbf{X} \end{bmatrix}.$$

### Diagonal matrices (D):

$$(\mathbf{X}\mathbf{w})_{+} = \mathbf{D}\mathbf{X}\mathbf{w} \iff \frac{\mathbf{D}\mathbf{X}\mathbf{w} \ge 0}{(\mathbf{I}_{n} - \mathbf{D})\mathbf{X}\mathbf{w} \le 0} \iff (2\mathbf{D} - \mathbf{I}_{n})\mathbf{X}\mathbf{w} \ge 0,$$

where  $\mathbf{D} \in \mathbb{R}^{n \times n}$  is a diagonal matrix of zeros and ones, i.e.,  $\mathbf{D}_{ii} \in \{0,1\}$ 

# **Training Complexity**

Architecture with three sub-networks (K = 3) and ReLU layers (L = 3):



Non-convex

Convex

Convex program can be globally optimized by standard interior-point solvers with complexity  $\mathcal{O}(poly(n,d))$ 

## **Numerical Results**



**Figure 1:** Test accuracy of a three-layer architecture trained using the non-convex formulation and the convex program

- ▶ Three-layer ReLU networks can be trained via convex optimization
  - don't need hyperparameter search, e.g., learning rate and initialization

- ► Three-layer ReLU networks can be trained via convex optimization
  - don't need hyperparameter search, e.g., learning rate and initialization
  - don't need heuristics such as dropout

- ► Three-layer ReLU networks can be trained via convex optimization
  - don't need hyperparameter search, e.g., learning rate and initialization
  - don't need heuristics such as dropout
- Convex problem has polynomial-time complexity with respect to the number of samples n and the feature dimension d

- ► Three-layer ReLU networks can be trained via convex optimization
  - don't need hyperparameter search, e.g., learning rate and initialization
  - don't need heuristics such as dropout
- Convex problem has polynomial-time complexity with respect to the number of samples n and the feature dimension d
- **Limitations:** 
  - convex representation is restricted to three layers (two ReLU layers)

- ► Three-layer ReLU networks can be trained via convex optimization
  - don't need hyperparameter search, e.g., learning rate and initialization
  - don't need heuristics such as dropout
- Convex problem has polynomial-time complexity with respect to the number of samples n and the feature dimension d
- ► Limitations:
  - convex representation is restricted to three layers (two ReLU layers)
  - we put unit  $\ell_2$ -norm constraints on the first L-2 layer weights (weight decay may not be the right way to regularize?)

- ► Three-layer ReLU networks can be trained via convex optimization
  - don't need hyperparameter search, e.g., learning rate and initialization
  - don't need heuristics such as dropout
- Convex problem has polynomial-time complexity with respect to the number of samples n and the feature dimension d
- ► Limitations:
  - convex representation is restricted to three layers (two ReLU layers)
  - we put unit  $\ell_2$ -norm constraints on the first L-2 layer weights (weight decay may not be the right way to regularize?)
  - lacktriangle when the data matrix is full rank, our approach has exponential-time complexity, which is unavoidable unless P=NP

### References i

# References

Haeffele, B. D. and Vidal, R. (2017). Global optimality in neural network training. In *Proceedings of the IEEE Conference on Computer Vision* and Pattern Recognition, pages 7331–7339.

Pilanci, M. and Ergen, T. (2020). Neural networks are convex regularizers: Exact polynomial-time convex optimization formulations for two-layer networks. In III, H. D. and Singh, A., editors, *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceedings of Machine Learning Research*, pages 7695–7705. PMLR.

### References ii

Zhang, H., Shao, J., and Salakhutdinov, R. (2019). Deep neural networks with multi-branch architectures are intrinsically less non-convex. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 1099–1109.