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Deep Learning Revolution

Deep learning models:

I often provide the best performance due to their large capacity

challenging to train

I are complex black-box systems based on non-convex optimization

hard to interpret what the model is actually learning
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Prior Work on Regularized Deep Learning Training Problems

Width (m) Assumption Depth (L) # of outputs (K )

(Savarese et al., 2019) ∞ 1D data (d = 1) 2 7 (K = 1)

(Parhi and Nowak, 2019) ∞ 1D data (d = 1) 2 7 (K = 1)

(Ergen and Pilanci, 2020a,b) finite rank-one/whitened 2 3 (K ≥ 1)

Our results finite
rank-one/whitened

or BatchNorm
L ≥ 2 3 (K ≥ 1)

Figure 1: One dimensional interpolation using

L-layer ReLU networks

Optimal solution for

L-layer ReLU networks is

given by piecewise linear

splines for any L ≥ 2.
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Warmup: Two-layer Linear Networks

X ∈ Rn×d : Data matrix, y ∈ Rn : Label vector

Wl ∈ Rml−1×ml : l th layer weight matrix

L(·, ·) : Arbitrary convex loss function

β > 0 : Regularization coefficient

fθ,L(X) : Output of an L-layer network

I Model: fθ,2(X) = XW1w2

I Optimization problem:

min
W1,w2

L(fθ,2(X), y) + β(‖W1‖2
F + ‖w2‖2

2)

I Optimal hidden layer weight: w∗1 =
XTPX,β(y)
‖XTPX,β(y)‖2

where PX,β(·) projects to {u ∈ Rn | ‖XTu‖2 ≤ β}.
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Deep Linear Networks

I Model: fθ,L(X) =
∑m

j=1 XW1,jW2,j . . .wL,j

I Optimization problem:

min
W1,w2

L(fθ,L(X), y) + β

m∑
j=1

L∑
l=1

‖Wl,j‖2
F

I Optimal hidden layer weights:

W∗l,j =


t∗j

XTPX,β(y)
‖XTPX,β(y)‖2

ρT
1,j if l = 1

t∗j ρl−1,jρ
T
l,j if 1 < l ≤ L− 2

ρL−2,j if l = L− 1

,

where ‖ρl,j‖2 = 1, PX,β(·) projects to
{
u ∈ Rn | ‖XTu‖2 ≤ βt∗

2−L

j

}
and tj = ‖W∗l,j‖F .
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Deep ReLU Networks

I Model: fθ,L(X) = AL−1wL, where Al,j = (Al−1,jWl,j)+,, A0,j = X,

∀l , j , and (x)+ = max{0, x}

Theorem

Let X be a rank-one matrix such that X = caT0 , where c ∈ Rn
+ and

a0 ∈ Rd , then strong duality holds and the optimal weights are

W∗l,j =
φl−1,j

‖φl−1,j‖2
φT

l,j , ∀l ∈ [L− 2], w∗L−1,j =
φL−2,j

‖φL−2,j‖2
,

where φ0,j = a0 and {φl,j}L−2
l=1 is a set of vectors such that φl,j ∈ Rml

+

and ‖φl,j‖2 = t∗j , ∀l ∈ [L− 2],∀j ∈ [m].

Corollary

For 1D data, i.e., x ∈ Rn, the optimal network output has kinks only at

the input data points, i.e., the output function is in the following form:

fθ,L(x̂) =
∑

i (x̂ − xi )+. Therefore, the optimal network output is a

linear spline interpolation.
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Vector-output ReLU Networks

Theorem

Let {X,Y} be a dataset such that XXT = In and Y ∈ Rn×K is one-hot

encoded, then a set of optimal solutions for the following regularized

training problem

min
θ∈Θ

1

2
‖fθ,L(X)− Y‖2

F +
β

2

m∑
j=1

L∑
l=1

‖Wl,j‖2
F

can be formulated as follows

W∗l,j =


φl−1,j

‖φl−1,j‖2
φT

l,j , if l ∈ [L− 1]

(‖φ0,j‖2 − β)+ φl−1,jeTr if l = L
,

where φ0,j = XTyj , {φl,j}L−2
l=1 are vectors such that φl,j ∈ Rml

+ ,

‖φl,j‖2 = t∗j , and φT
l,iφl,j = 0, ∀i 6= j , Moreover, φL−1,j = ej is the j th

ordinary basis vector.
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Numerical Results
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Figure 2: Training and test performance on whitened and sampled datasets.
7



Takeaways and Open Problems

I Optimal solutions to regularized deep neural network training

problems can be explicitly characterized via convex analytic

frameworks

I When the input data is whitened or rank-one, optimal layer weights

of an L-layer deep ReLU network can be found the closed-form

I For 1D datasets, kinks of ReLU occur exactly at the input data so

that the optimal network outputs linear spline interpolations

I Open problems:

extension of the analysis to standard deep networks

generalization properties of the optimal solutions
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