Understanding and Mitigating Accuracy Disparity in Regression
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Main Results

Accuracy Disparity Problem Exists in Regression Models: Error Decomposition Theorem B Datasets: (1) Adult, (2) COMPAS, (3) Communities and Crime, (4)
Law School, and (5) Medical Insurance Cost.
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Figure 1: The above table is taken from (Buolamwini and Gebru, 2018) B If the label distributions are highly imbalanced across groups, then o o o o
the error gap could be potentially large. = < "ol
Questions: B If we can minimize the second term on the right side, we then have owi -
' a model that is free of accuracy disparity when the label distribution B
B How does the accuracy disparity problem arise in re- is well aligned. Y T e T

gression? . , . .
Figure 2: Overall results: R“ regression scores and error gaps of different

methods in five datasets. Results shown from left to right, top to bottom
are from Adult, COMPAS, Crime, Law School, and Insurance datasets.

B Are there any algorithmic interventions to reduce
the disparity gap between different demographic sub-

groups in the regression setting ? Algorithmic Interventions
R Conclusion: Trade-offs between regression performance and accuracy
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® Given a Markov chain X —=+ Z — Y, we learn group-invariant parity exist in all datasets. Our proposed methods achieve the best trade-
reliminarics joint representations between Do(Z = g(X), Y) and Di(£ = offs in Adult, COMPAS, Crime and Insurance datasets.

g(X), Y) via adversarial representation learning using a discrimi-
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