Cross-model Back-translated Distillation for Unsupervised Machine Translation

Xuan-Phi Nguyen^{1,2}, Shafiq Joty^{1,3}, Thanh-Tung Nguyen^{1,2}, Wu Kui², Ai Ti Aw² ¹Nanyang Technological University ²Institute for Infocomm Research (I²R), A*STAR ³Salesforce Research Singapore

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Data Diversity

- Recent Unsupervised MT (UMT) models [Lample et al., 2018] generate and feed diversified synthetic data during training.
 - Denoising-Auto-Encoding: randomly noises the input sentence.

$$\mathbb{X} \dashrightarrow x \xrightarrow{\text{noise}} \hat{x} \xrightarrow{(\hat{x},x)} \theta$$

Iterative Back-translation: translates monolingual data to obtain pseudo-parallel data and train it via back-translation.

$$\mathbb{X}_{s} \dashrightarrow x_{s} \xrightarrow{\theta} y_{t} \xrightarrow{(y_{t}, x_{s})} \theta$$
$$\mathbb{X}_{t} \dashrightarrow x_{t} \xrightarrow{\theta} y_{s} \xrightarrow{(y_{s}, x_{t})} \theta$$

Data Diversity

 Recent Unsupervised MT (UMT) models [Lample et al., 2018] generate and feed diversified synthetic data during training.

Denoising-Auto-Encoding: randomly noises the input sentence.

$$\mathbb{X} \dashrightarrow x \xrightarrow{\text{noise}} \hat{x} \xrightarrow{(\hat{x},x)} \theta$$

Iterative Back-translation: translates monolingual data to obtain pseudo-parallel data and train it via back-translation.

$$\mathbb{X}_{s} \dashrightarrow x_{s} \xrightarrow{\theta} y_{t} \xrightarrow{(y_{t}, x_{s})} \theta$$
$$\mathbb{X}_{t} \dashrightarrow x_{t} \xrightarrow{\theta} y_{s} \xrightarrow{(y_{s}, x_{t})} \theta$$

- As training matures, the MT model may have covered the data distribution these strategies can diversely generate.
- Motivation: increasing synthetic data diversity can help improve unsupervised MT.

Cross-model Back-translated Distillation (CBD)

- A method aim to artificially increase data diversity
- ► Uses 2 <u>distinct</u> UMT models instead: θ_1 and θ_2 to generate synthetic data in a cross-model fashion.
- Uses the data to train a final supervised bidirectional model θ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\mathbb{X}_s \dashrightarrow x_s \xrightarrow[s \to t]{\theta_\alpha} y_t$$

Figure: The sampling process of $x_s, y_t, z_s, x_t, y_s, z_t$. The variable ordered set $(\theta_{\alpha}, \theta_{\beta})$ is replaced with (θ_1, θ_2) and (θ_2, θ_1) iteratively in during training. All synthetic parallel pairs are used to train θ in a supervised way.

$$\mathbb{X}_s \dashrightarrow x_s \xrightarrow[s \to t]{\theta_\alpha} y_t \xrightarrow[t \to s]{\theta_\beta} z_s$$

Figure: The sampling process of $x_s, y_t, z_s, x_t, y_s, z_t$. The variable ordered set $(\theta_{\alpha}, \theta_{\beta})$ is replaced with (θ_1, θ_2) and (θ_2, θ_1) iteratively in during training. All synthetic parallel pairs are used to train θ in a supervised way.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

$$\mathbb{X}_{s} \dashrightarrow x_{s} \xrightarrow[s \to t]{\theta_{\alpha}} y_{t} \xrightarrow[t \to s]{\theta_{\beta}} z_{s} \xrightarrow[(x_{s}, y_{t}), (y_{t}, x_{s})]{\theta_{\beta}} \theta_{s}$$

Figure: The sampling process of $x_s, y_t, z_s, x_t, y_s, z_t$. The variable ordered set $(\theta_{\alpha}, \theta_{\beta})$ is replaced with (θ_1, θ_2) and (θ_2, θ_1) iteratively in during training. All synthetic parallel pairs are used to train θ in a supervised way.

$$\mathbb{X}_{s} \dashrightarrow x_{s} \xrightarrow[s \to t]{\theta_{\alpha}} y_{t} \xrightarrow[t \to s]{\theta_{\beta}} z_{s} \xrightarrow[(x_{s}, y_{t}), (y_{t}, x_{s})]{\theta_{t}} \theta$$

$$\mathbb{X}_{t} \dashrightarrow x_{t} \xrightarrow[t \to s]{\theta_{\alpha}} y_{s} \xrightarrow[s \to t]{\theta_{\beta}} z_{t} \xrightarrow[(x_{t}, y_{s}), (y_{s}, x_{t})]{\theta_{s}} \theta$$

Figure: The sampling process of $x_s, y_t, z_s, x_t, y_s, z_t$. The variable ordered set $(\theta_{\alpha}, \theta_{\beta})$ is replaced with (θ_1, θ_2) and (θ_2, θ_1) iteratively in during training. All synthetic parallel pairs are used to train θ in a supervised way.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

CBD Training Algorithm

Algorithm Cross-model Back-translated Distillation: Given monolingual data X_s and X_t of languages s and t, return a UMT model with parameters θ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1: Train the 1st UMT agent with parameters $heta_1$
- 2: Train the 2nd UMT agent with parameters θ_2
- 3: Initialize model θ (randomly or with pretrained model)
- 4: while until convergence do

5:
$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{\theta}(\theta_{\alpha} = \theta_1, \theta_{\beta} = \theta_2)$$

6:
$$\theta \leftarrow \theta - \eta \nabla_{\theta} \mathcal{L}_{\theta}(\theta_{\alpha} = \theta_2, \theta_{\beta} = \theta_1)$$

7: return θ

WMT Unsupervised Machine Translation

Method / Data	En-Fr	Fr-En	En-De	De-En	En-Ro	Ro-En
NMT [Lample et al., 2018]	25.1	24.2	17.2	21.0	21.1	19.4
PBSMT [Lample et al., 2018]	27.8	27.2	17.7	22.6	21.3	23.0
XLM [Conneau and Lample, 2019]	33.4	33.3	26.4	34.3	33.3	31.8
MASS [Song et al., 2019]	37.5	34.9	28.3	35.2	35.2	33.1
CBD	38.2	35.5	30.1	36.3	36.3	33.8

Table: BLEU scores on the *large scale* WMT'14 English-French (En-Fr), WMT'16 English-German (En-De) and WMT'16 English-Romanian (En-Ro) unsupervised translation tasks.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Benefit of Cross-model Back-translation

$$\mathbb{X}_{s} \dashrightarrow x_{s} \xrightarrow[s \to t]{\theta_{\alpha}} y_{t} \xrightarrow[t \to s]{\theta_{\alpha}} z_{s} \xrightarrow[(x_{s},y_{t}),(y_{t},x_{s})]{\theta_{\alpha}} \theta$$

Figure: No cross-model Back-translated Distillation - BD(2/2), where only 1 model involves in the two-stage translation processes.

Method	En-Fr	Fr-En	En-De	De-En	En-Ro	Ro-En
NMT	24.7	24.5	14.5	18.2	16.7	16.3
BD(1/1)	24.5	24.5	14.0	17.5	16.1	15.9
BD(1/2)	24.6	24.6	14.1	17.8	16.4	16.2
BD(2/2)	24.8	24.7	14.4	18.1	16.9	16.4
CBD	26.6	25.7	16.6	20.5	18.1	17.8

Table: BLEU comparison of CBD vs. no cross-model variants in the *base* WMT'14 English-French (En-Fr), WMT'16 English-German (En-De) and English-Romanian (En-Ro) tasks.

CBD Creates Data Diversity

$$\mathbb{X}_{s} \dashrightarrow x_{s} \xrightarrow[s \to t]{\theta_{\alpha}} y_{t} \xrightarrow[t \to s]{\theta_{\beta}} z_{s} \Rightarrow BLEU_{recon}(x_{s}, z_{s})$$

Figure: How the reconstruction BLEU score is computed.

Method	En-Fr	Fr-En	En-De	De-En	En-Ro	Ro-En
BD	76.0	72.4	75.3	63.7	73.2	71.5
CBD	63.1	59.7	60.3	50.5	61.1	56.9

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Table: Reconstruction BLEU scores of BD and CBD in different languages for the *base* WMT unsupervised translation tasks. Lower BLEU means more diverse.

CBD vs Other Diversity-related Methods

WMT	En-Fr	Fr-En	En-De	De-En		
XLM	33.0	31.5	23.9	29.3		
Sampling (temp=0.3)	33.5	32.2	24.3	30.2		
Top- k sampling	33.18	32.26	24.0	29.9		
Top- <i>p</i> sampling	Diverge					
Target noising	32.8	30.7	24.0	29.6		
Multi-agent dual learning	33.5	31.7	24.6	29.9		
CBD	35.4	33.0	26.1	31.5		

Table: Comparison with other alternatives on the *base* WMT En-Fr, Fr-En, En-De and De-En, with XLM as the base model.

- Alexis Conneau and Guillaume Lample. Cross-lingual language model pretraining. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox, and R. Garnett, editors, *Advances in Neural Information Processing Systems 32*, pages 7059–7069. Curran Associates, Inc., 2019.
- Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc'Aurelio Ranzato. Phrase-based & neural unsupervised machine translation. In *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pages 5039–5049, Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1549. URL https://www.aclweb.org/anthology/D18-1549.
- Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mass: Masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450, 2019.