Demonstration-Conditioned Reinforcement Learning for Few-Shot Imitation

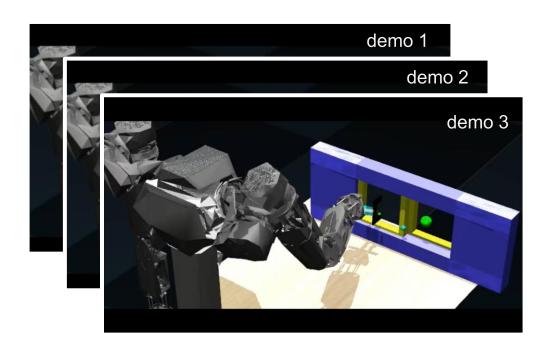
Théo Cachet

Julien Perez

Christopher Dance

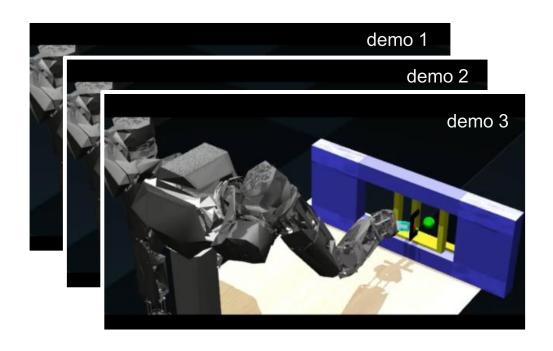
Given a few demonstrations of a new, previously unseen task

Given a few demonstrations of a new, previously unseen task

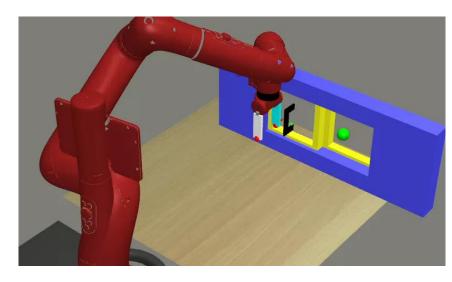


Find a policy which performs that task effectively.

Given a few demonstrations of a new, previously unseen task



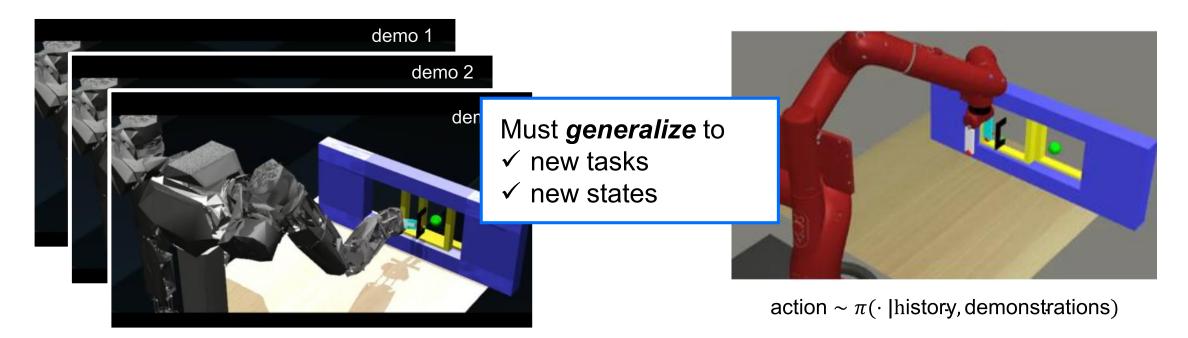
Find a policy which performs that task effectively.



action $\sim \pi(\cdot | \text{history, demonstrations})$

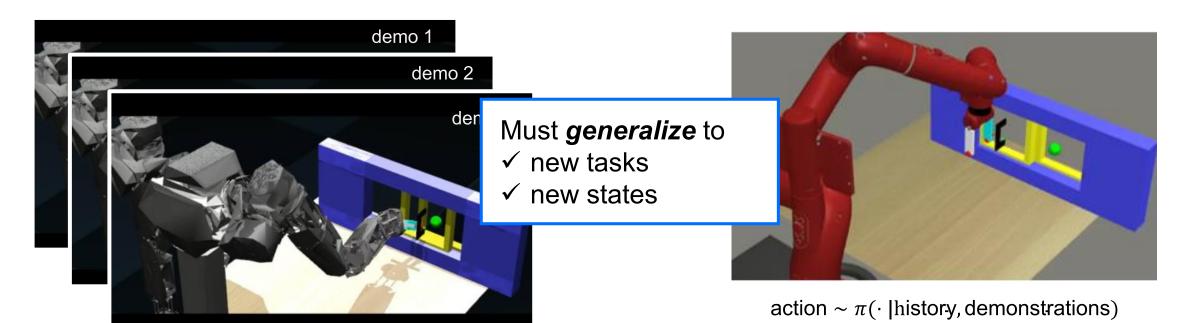
Given a few demonstrations of a new, previously unseen task

Find a policy which performs that task effectively.



Given a few demonstrations of a new, previously unseen task

Find a policy which performs that task effectively.



Demonstration is flexibly defined:

- ✓ noisy, incomplete, sub-optimal
- ✓ no actions
- √ human demonstrator + robot agent

Formulation Few-Shot Imitation NAVER LABS

Ingredients

 η

Distribution over tasks $\mu \sim \eta$

Formulation Few-Shot Imitation NAVER LABS

Ingredients

 η Distribution over tasks $\mu \sim \eta$

 D_{μ} Distribution over collections **d** of demonstrations of task μ

Formulation Few-Shot Imitation

Ingredients

 η Distribution over tasks $\mu \sim \eta$

 D_{μ} Distribution over collections **d** of demonstrations of task μ

 $\pi(\cdot | h, \mathbf{d})$ Demonstration-conditioned policy given history h and demonstrations \mathbf{d}

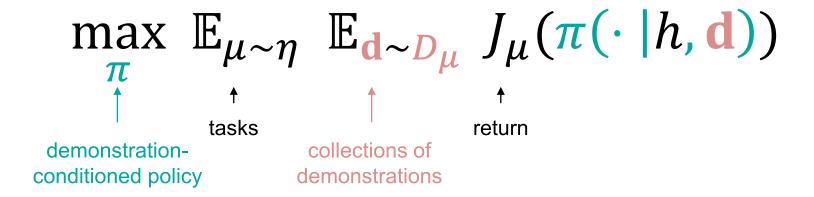
Ingredients

 η Distribution over tasks $\mu \sim \eta$

 D_{μ} Distribution over collections d of demonstrations of task μ

 $\pi(\cdot | h, \mathbf{d})$ Demonstration-conditioned policy given history h and demonstrations \mathbf{d}

Objective



Ingredients

 η

Distribution over tasks $\mu \sim \eta$

 D_{μ}

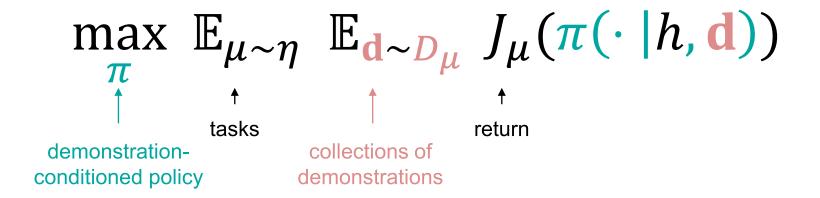
 $\pi(\cdot | h, \mathbf{d})$

Each task μ is an MDP $J_{\mu}(\pi)$ is the return for policy π

Distribution over collections ${\bf d}$ of demonstrations of task μ

Demonstration-conditioned policy given history h and demonstrations d

Objective



Ingredients

 η

 D_{μ}

 $\pi(\cdot | h, \mathbf{d})$

Each task μ is an MDP $J_{\mu}(\pi)$ is the return for policy π

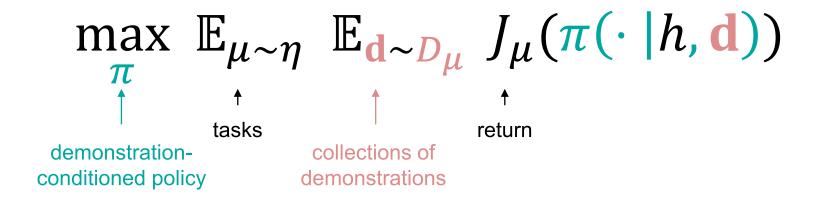
Distribution over tasks $\mu \sim \eta$

Distribution over collections d of demonstrations of task μ

few \leftrightarrow 1 to 10

Demonstration-conditioned policy given history h and demonstrations d

Objective



13

 η

 D_{μ}

 $\pi(\cdot | h, \mathbf{d})$

Each task μ is an MDP $J_{\mu}(\pi)$ is the return for policy π

Distribution over tasks $\mu \sim \eta$

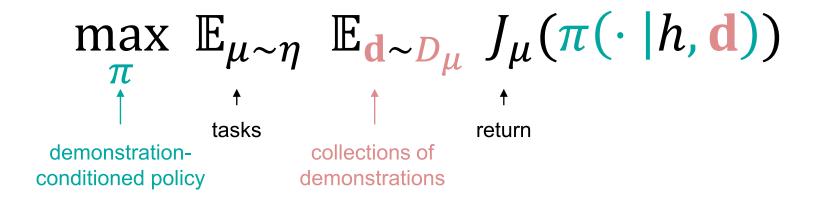
Distribution over collections d of demonstrations of task μ

few \leftrightarrow 1 to 10

Demonstration-conditioned policy given history h and demonstrations d

POMDPs

Objective



DCRL maximizes the return of a demonstration-conditioned policy, averaged over a set of training tasks and corresponding demonstrations.

 μ^0 , ..., μ^{N-1} may not be distinct

Train

Pairs $(\mathbf{d^0}, \mu^0)$, ..., $(\mathbf{d^{N-1}}, \mu^{N-1})$ where $\mathbf{d^i}$ is a collection of demonstrations of task μ^i Input

 $\max_{\boldsymbol{\pi}} \sum_{\boldsymbol{\mu}^i} (\boldsymbol{\pi}(\cdot \mid \cdot, \mathbf{d}^i))$ A demonstration-conditioned policy π attaining

Test

Input

d Collection of demonstrations of new, previously unseen task
 π Demonstration-conditioned policy given by DCRL

Observe history h_t and take action $a_t \sim \pi(\cdot | h_t, \mathbf{d})$ Repeat

No need for reward function No need for to explore the test env't

Behaviour cloning (BC)

Duan et al. '17

$$\min_{\boldsymbol{\pi}} \sum_{i=0}^{N-1} \sum_{(s,a) \in \mathbf{d}^i} \ell(a,\boldsymbol{\pi}(\cdot | s, \mathbf{d}^i))$$
action-prediction loss

Behaviour cloning (BC)

Duan et al. '17

$$\min_{\boldsymbol{\pi}} \sum_{i=0}^{N-1} \sum_{(s,a) \in \mathbf{d}^i} \ell(a, \boldsymbol{\pi}(\cdot | s, \mathbf{d}^i))$$

Meta-inverse RL

Yu et al. '19a, Goo and Niekum '19

Infer reward
$$\widehat{R}_{\mu}$$
 from d
$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^{t} \widehat{R}_{\mu}(s_{t}, a_{t}) \right]$$

Behaviour cloning (BC)

Duan et al. '17

$$\min_{\boldsymbol{\pi}} \sum_{i=0}^{N-1} \sum_{(s,a) \in \mathbf{d}^i} \ell(a, \boldsymbol{\pi}(\cdot | s, \mathbf{d}^i))$$

Meta-inverse RL

Yu et al. '19a, Goo and Niekum '19

Infer reward \widehat{R}_{μ} from ${f d}$

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^{t} \, \widehat{R}_{\mu}(s_{t}, a_{t}) \right]$$

Demonstration-conditioned RL This paper

$$\max_{\boldsymbol{\pi}} \sum_{i=0}^{N-1} J_{\mu^i}(\boldsymbol{\pi}(\cdot \mid \cdot, \mathbf{d}^i))$$

Behaviour cloning (BC)

Duan et al. '17

$$\min_{\boldsymbol{\pi}} \sum_{i=0}^{N-1} \sum_{(s,a) \in \mathbf{d}^i} \ell(a, \boldsymbol{\pi}(\cdot | s, \mathbf{d}^i))$$

Needs actions in demo's

No interaction with the test env't

Compounding errors \Rightarrow loss is $O(H^2)$ on horizon H (Rajaraman et al., 2020)

Meta-inverse RL

Yu et al. '19a, Goo and Niekum '19

Infer reward \widehat{R}_{μ} from d

$$\max_{\pi} \mathbb{E}_{\pi} \left[\sum_{t} \gamma^{t} \, \widehat{R}_{\mu}(s_{t}, a_{t}) \right]$$

No need for actions in demo's

Must interact with the test env't

Demonstration-conditioned RL This paper

$$\max_{\boldsymbol{\pi}} \sum_{i=0}^{N-1} J_{\mu^i}(\boldsymbol{\pi}(\cdot \mid \cdot, \mathbf{d}^i))$$

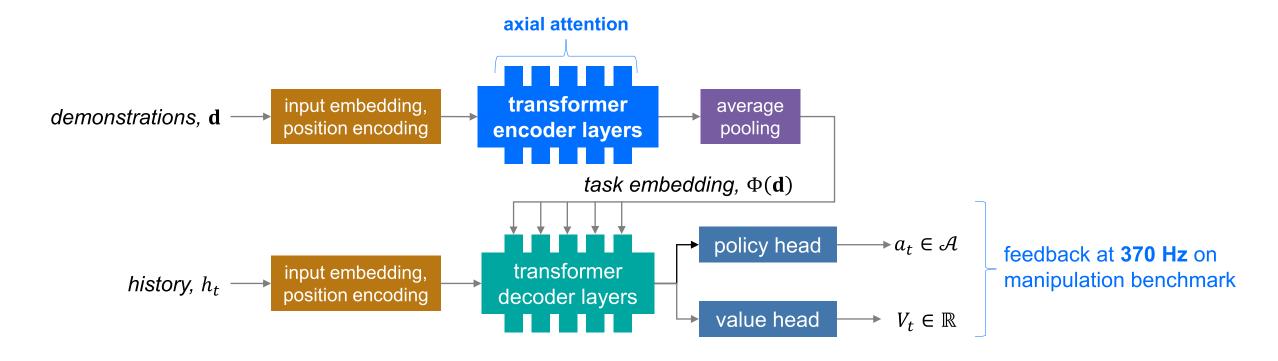
No need for actions in demo's

No interaction with the test env't

Improves on suboptimal demo's

Copes with demonstrator domain shift

Needs reward function for training



Attention and transformers already in use for few-shot imitation (Duan et al. '17, Mishra '18, James '18, Dasari '20)

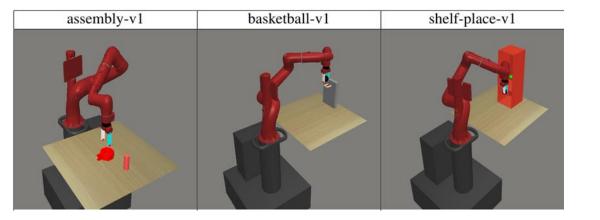
Novelty

- 1. Cross-demonstration attention. Process multiple demonstrations jointly.
- 2. **Axial attention.** Attend to one dimension of the input at a time (Ho *et al.* '18). Reduces time and memory from $O(T^2n^2)$ to O(Tn(T+n)) for n time series of length T

ExperimentsNAVER LABS

1. Meta-World Benchmark (Yu et al., '19)

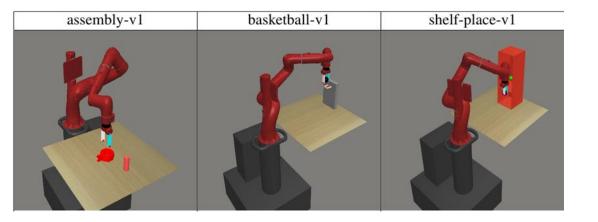
50 manipulation tasks e.g. open-window, lock-door



ExperimentsNAVER LABS

1. Meta-World Benchmark (Yu et al., '19)

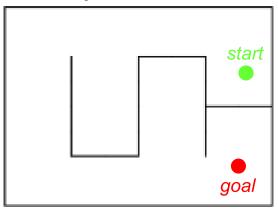
50 manipulation tasks e.g. open-window, lock-door



2. Navigation Benchmark

60 mazes ↔ tasks

map of test maze



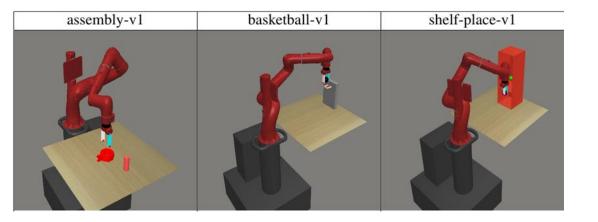
Aim

Get from start to goal state (randomized).

ExperimentsNAVER LABS

1. Meta-World Benchmark (Yu et al., '19)

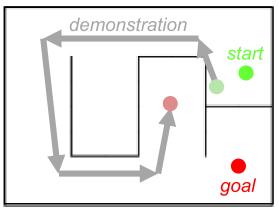
50 manipulation tasks e.g. open-window, lock-door



2. Navigation Benchmark

60 mazes ↔ tasks

what the agent sees



Aim

Get from start to goal state (randomized). Agent can't see the walls, but is penalized if it hits a wall. So, it must infer the walls from the demonstrations.

Evaluation. All experiments we will now present had distinct training and test tasks.

DCRL consistently beats behaviour-cloning methods

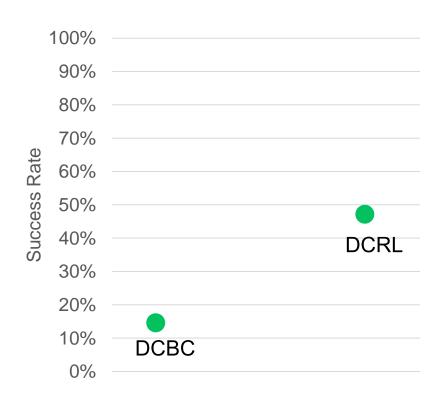
Definition (**DCBC**). Demonstration-conditioned behavioural cloning (DCBC) has the same architecture as DCRL, but is trained with a behaviour-cloning loss.

– like Duan et al. (2016)

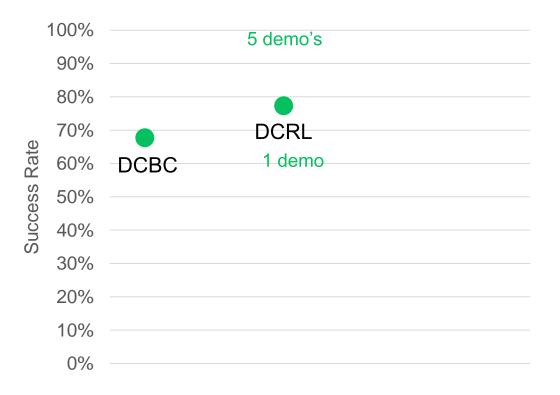
DCRL consistently beats behaviour-cloning methods

Definition (**DCBC**). Demonstration-conditioned behavioural cloning (**DCBC**) has the same architecture as DCRL, but is trained with a behaviour-cloning loss.

Meta-World



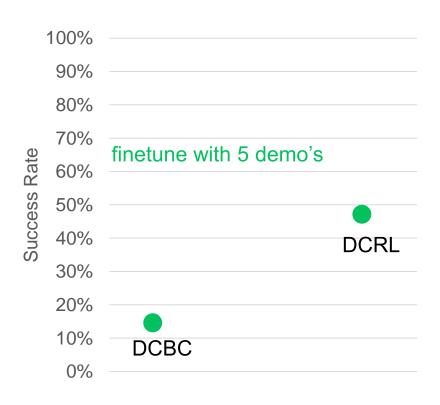
Navigation



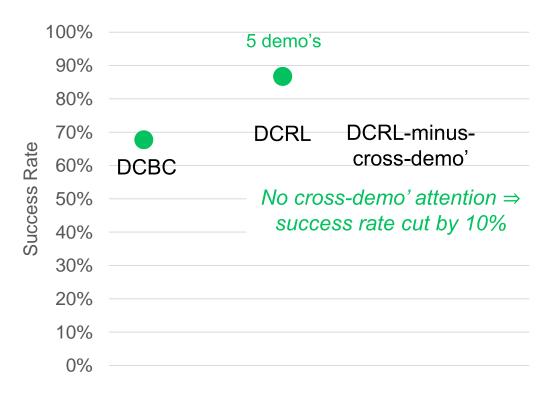
DCRL consistently beats behaviour-cloning methods

Definition (DCBC). Demonstration-conditioned behavioural cloning (DCBC) has the same architecture as DCRL, but is trained with a behaviour-cloning loss.

Meta-World

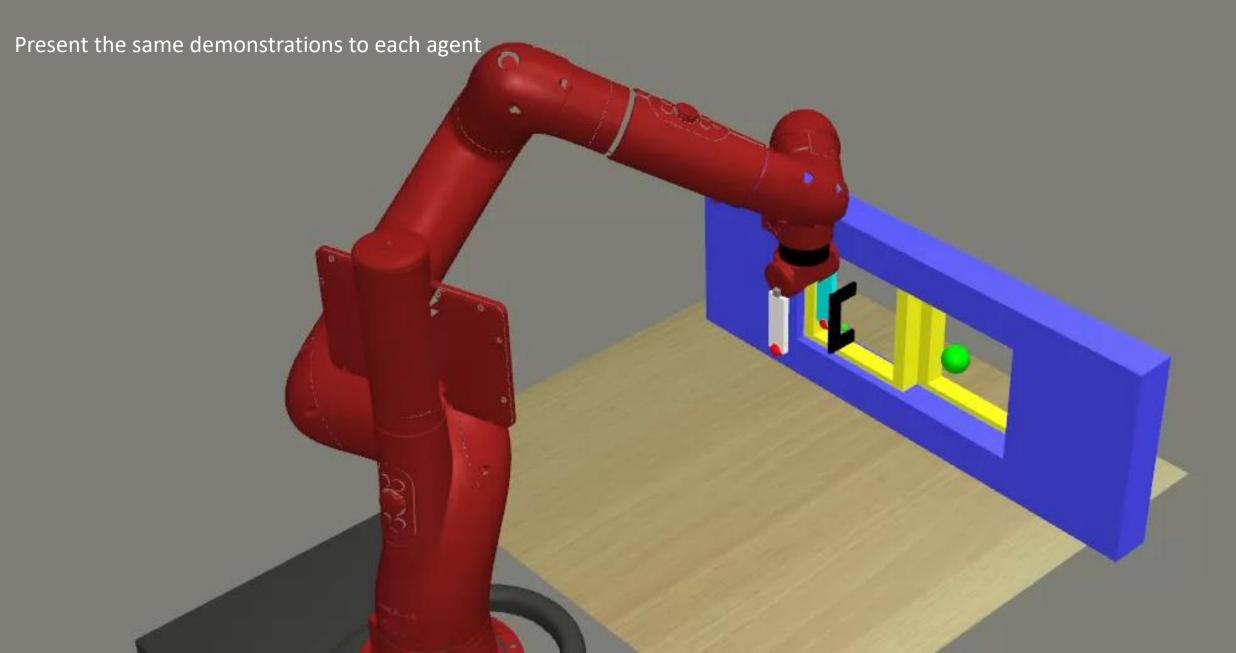


Navigation

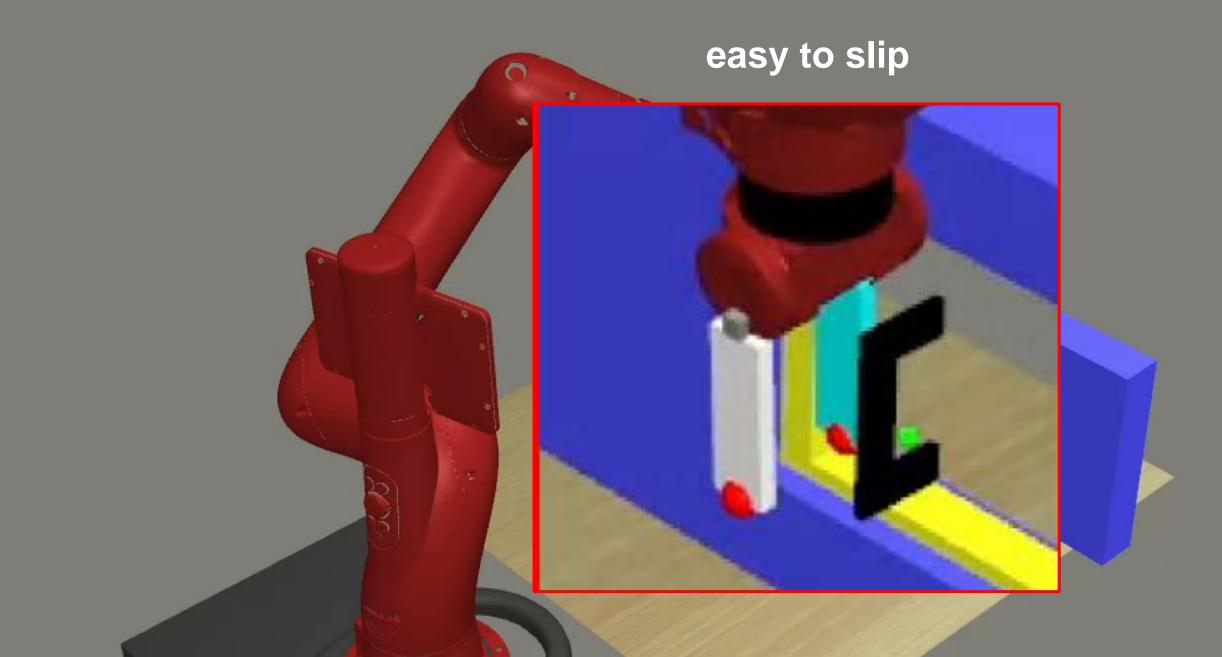


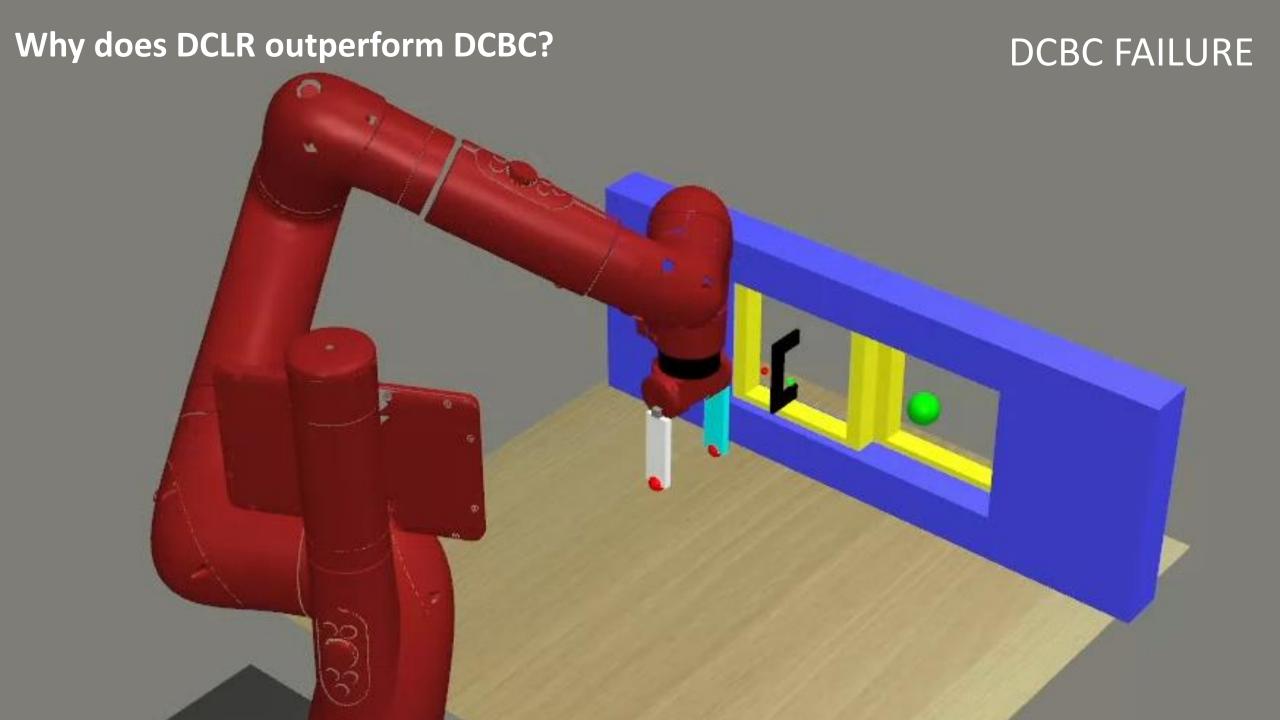
Why does DCLR outperform DCBC?

DEMONSTRATIONS

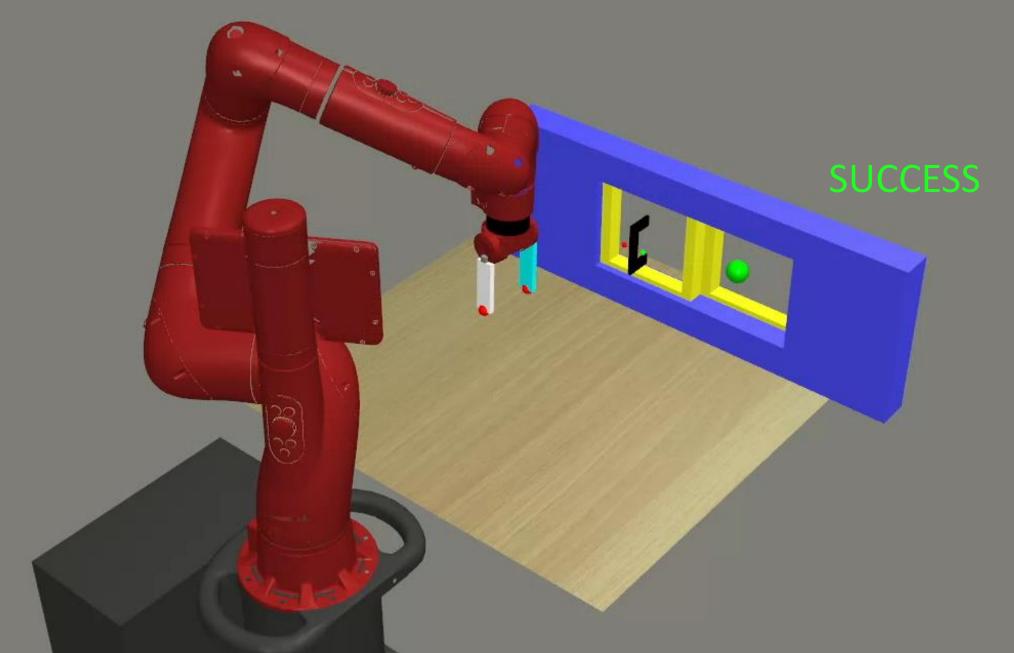


Why does DCLR outperform DCBC?

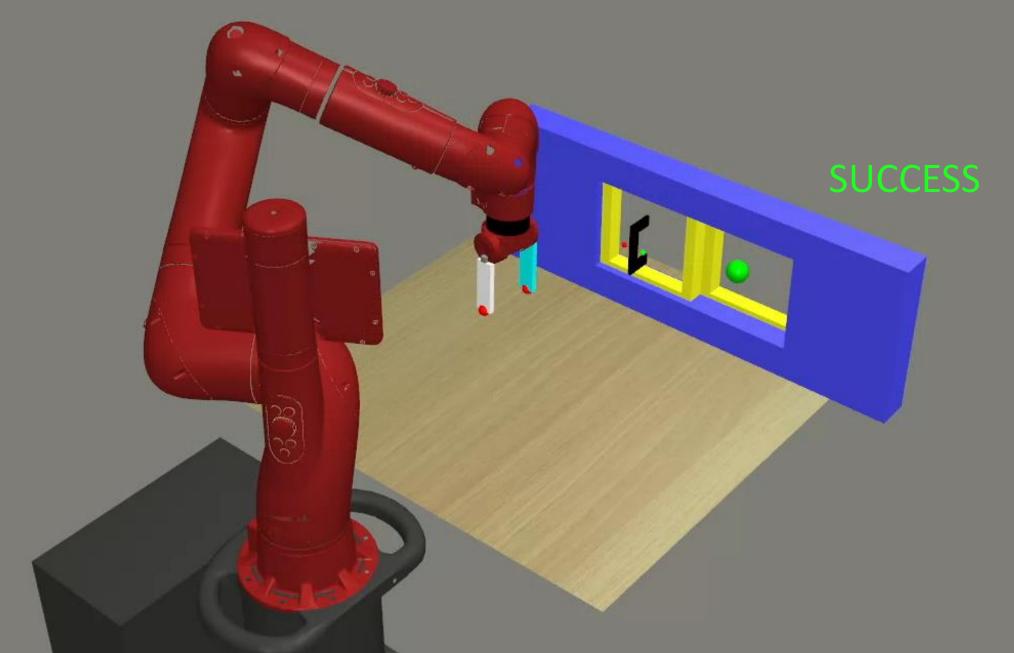




DCRL RECOVERY

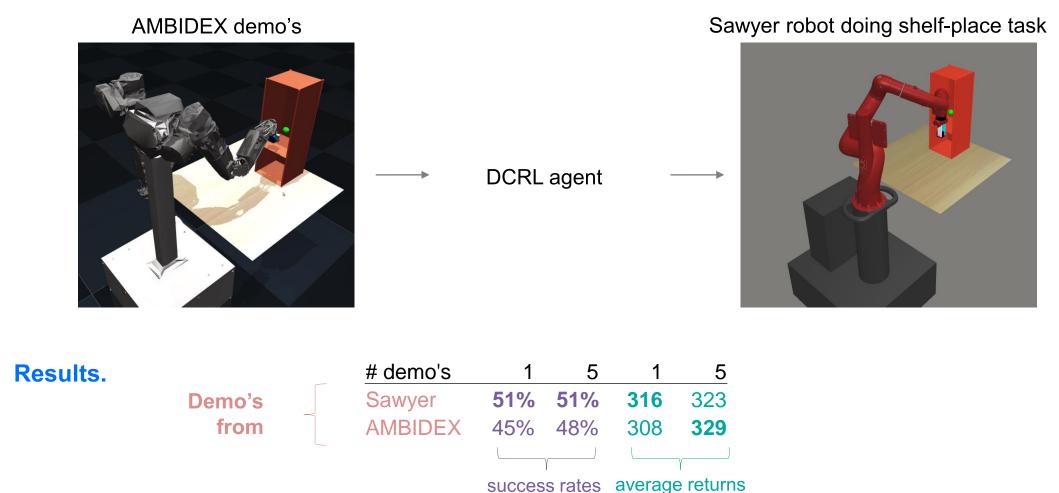


DCRL RECOVERY



Motivation. Control a robot given human demonstrations.

Experiment. Control Sawyer robot given demo's from an AMBIDEX robot.



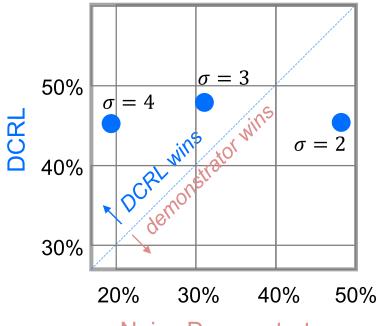
Motivation. Demonstrations are often suboptimal

Experiment. Add noise $\sim \mathcal{N}(0, \sigma^2 I_{4\times 4})$ to demonstrator actions (only at test)

Motivation. Demonstrations are often suboptimal

Experiment. Add noise $\sim \mathcal{N}(0, \sigma^2 I_{4\times 4})$ to demonstrator actions (only at test)

Success Rates on Meta-World



Noisy Demonstrator

For $\sigma > 2$ DCRL outperforms the noisy demonstrator

+ no test-time exploration

☼ video of humans + real robot

DCRL is a new, third family of approaches to few-shot imitation { IRL, BC } U { DCRL }

Thank you

See the full paper for more experiments, t-SNE plots of the task embeddings, ...

See europe.naverlabs.com for videos of task execution

