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Current State of the Art

e Current Progress: The field has become increasingly competent at solving two-player, zero-sum
games (Go, Chess, StarCraft).

e Zero-Sum Definition: Purely competitive class where one player’s gain is another player’s loss.

e Properties: Zero-sum games are easier to solve because there is a principled target objective; the set
of Nash equilibrium policies, which are interchangeable and tractable to compute for this class.

e Real World: The real world has many games which have more than two players and are not purely
competitive (“n-player, general-sum”).

e Previous Work: Some work on n-player, general-sum (Capture the Flag, Dota) has been impressive but
falls short of convincingly solving these games.

e Blocker: Progress beyond two-player, zero-sum has been stymied by a a) lack of game theoretic
learning algorithms suitable for this setting and b) uncertainty on a suitable solution concept.
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Contributions of this work

e Solution Concept: We argue that (normal form) correlated equilibria (CEs) and coarse correlated
equilibria (CCEs) are suitable target objectives in n-player, general-sum games.

e Equilibrium Selection: We suggest a new tractable method of picking between several equilibria
(“equilibrium selection problem”): maximum Gini (C)CE (MG(C)CE).

e Learning Algorithms: We provide two new algorithms based on Policy Space Response Oracles
(PSRO) for training agents in n-player, general-sum games, called JPSRO(CE) and JPSRO(CCE).

e Convergence: We mathematically prove that JPSRO(CE) converges to a CE, and JPSRO(CCE)
converges to a CCE.

e Empirical: We empirically check that this algorithm converges to maximum welfare (C)CE solutions
in 3-player Kuhn poker (purely competitive), Trade Comm (purely cooperative), and Sheriff (a mixed
cooperative and competitive game). We provide code with this work.

e Meta-Solver Study: We evaluate a number of meta-solvers for JPSRO and discuss their strengths

and weaknesses. @



Why (Coarse) Correlated Equilibrium?

e Tractable: Is tractable to compute in n-player,
general-sum settings.

e Convex: Has a convex polytope of solutions.

e Coordination: Allows players coordinate
strategies (essential in cooperative games).

e High Value Joint Policy: Results in higher value
solutions than Nash equilibrium.

e Principled: Is a principled, well studied game
theoretic solution.
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Maximum Gini (Coarse) Correlated Equilibrium MG(C)CE

Solving equilibrium selection:

e Objective: Maximizes the Gini Impurity (Z 1-
¢?), a quantity closely related to Shannon’s
entropy.

e Known Problem Class: Is a quadratic program
so can be computed with many off-the-shelf
solvers.

e Properties:
o  Scales well when solutions are
full-support distributions.
o lIsinvariant under affine transforms of the
payoff tensor.
o  Can be parameterized by € to produce a
family of distributions.
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JPSRO - An n-player, general-sum training algorithm

A straightforward extension to PSRO. Algorithm 2 JPSRO

1: 119, ... <— {771} {Wg}
2: GO ER(HO)
3: oY+ MS(G?)
e (C)CE meta-solvers (MS) can be used to find a 4: fort < {1,..} do
joint distribution. 5 for p < {1,....,n} do
6
7
8
9

e Instead of using factorized distributions (PSRO),
JPSRO uses full joint distributions.

{1 t } {lAt } — BRp(HO:t—l’ O.t—l)
HOteHOt 1u{1 .

Gt «+ ER(I1)

o' < MS(G")

e Custom best response (BR) operators either
converge to a CE or CCE.

e Convergence is achieved when there is no gap

(A) under the meta-solver distribution. 0. " Zp CAt _'0 then
The output is a joint probability distribution (¢) over 11: blaeak
return 11

set joint policies (IT).
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JPSRO(CCE) Empirical Results

We verified our algorithm on a variety of games

1.

Converges to within numerical precision to
(coarse) correlated equilibria.

Tends to find high value equilibria (usually the
maximum welfare equilibria).

Verified that classic meta-solvers either do not
perform as well or make no progress at all

Kuhn Poker: 3-Player Pure Competition
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JPSRO(CCE) Empirical Results
3-Player Kuhn Poker
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CCE meta-solvers converge to within numerical precision of a CCE. ‘ﬁl



JPSRO(CCE) Empirical Results
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CCE meta-solvers rapidly converge to maximum welfare solution. Other meta-solvers flatline.
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JPSRO(CCE) Empirical Results
Sheriff
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Limitations and Future Work

e RL and Function Approximation: We believe it is easy to
modify JPSRO to use RL for the best response operator,
enabling more complex games to be tackled.

e Scaling: Although this work proves theoretically a way to
converge to normal form (C)CEs for any n-player,
general-sum game, there are still significant challenges in
scaling to large number of players, mainly due to large payoff
tensors.

e Centralized: JPSRO is (in part) a centralized training
algorithm. Further work to enable fully decentralized training
would be beneficial.
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