Closed Loop Neural-Symbolic Learning via
Integrating Neural Perception, Grammar
Parsing, and Symbolic Reasoning
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How does human do this task?

= 2 4 3X9 == N\

1. Always generate a valid formula Prior knowledge
2. Back-trace the error 1n the reasoning tree

3. Find the error source and propose a fix
4. Update the perception

Abductive reasoning



Contributions

* Grammar to bridge neural network and symbolic reasoning
* NGS: Neural perception + Grammar parsing + Symbolic reasoning

* Back-search
* Mimic human’s ability to learn from failures via abductive reasoning

* A new benchmark HWF for neural-symbolic learning
* Hand-written Formula Recognition with Weak Supervision



Hand-written Formula Recognition (HWF)
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Forward Pass (Inference)



Forward Pass (Inference)
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Backward Pass (Learning)

* Assumptions

* Grammar and Symbolic reasoning are perfectly designed by hand, based on
our domain knowledge.

* Only the parameters of neural network need to be learned.

* Gradient descent cannot be applied directly
* Grammar parsing and symbolic reasoning are non-differentiable.



1-step Back-search (1-BS)

* Top-down search 1s guided by the bottom-up perception probability
* Dynamic Programming + Priority Queue

Algorithm 1 1-step back-search (1-BS)
1: Input: 2,5,y
2: q = PriorityQueue()
3: q.push(S,y,1)
4: while A, a4,p = q.pop() do

5. if A € X then

6: 2 =Z2(A > ay)

7 return z*

8: for B € child(A) do

9: ap = solve(B, A, as|A, G)
10: q.push(B,ap,p(B — ap))

11: return ()
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A running example for 1-BS
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Why can BS be better than RL?

* Learning as Maximum Marginal Likelihood
* REINFORCE as Rejection Sampling
* m-BS as MCMC sampling

* Metropolis-Hastings sampler



Learning as Maximum Marginal Likelihood
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Posterior distribution
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REINFORCE as Rejection Sampling

» Target distribution:  p(2|z,y)
* Proposal distribution: pe(z|x)

* Rejection sampling:
1. Sample z from pg(z|x)
2.1 mmmmms >



m-BS as MCMC Sampling

* m-BS 1s a Metropolis-Hastings
sampler for p(z|z,y)

LS 2z e

[Proof 1in Sec. 3.2.3]



Experiments

* Hand-written Formula Recognition
* Neural-symbolic VQA



Hand-written Formula Recognition

* Dataset
* Built from the CROHME challenge
* 10k expressions for training, 2k expressions for testing

* Evaluation
* Symbol accuracy, Result Accuracy

* Models
* NGS-RL, NGS-RL-Pretrained

* NGS-MAPO*, NGS-MAPO-Pretrained  *Pretrain NN on a set of fully-supervised data
e NGS-BS *Memory-Augmented Policy Optimization [1]

[1] Liang, Chen, et al. "Memory augmented policy optimization for program synthesis and
semantic parsing." Advances in Neural Information Processing Systems. 2018.


https://www.cs.rit.edu/~crohme2019/task.html
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Learning curves

NGS-RL fails without pretraining

. NGS-MAPO works without pretraining

but takes a long time to start improving
(cold start).

Both NGS-RL and NGS-MAPO have
noisy learning curves.

NGS-BS doesn’t suffer from the cold
start.

NGS-BS converges much faster and the
learning curve is smooth.

NGS-BS achieves nearly perfect
accuracy.



Data efficiency
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Test Accuracy at Epoch 100

=@— NGS-RL-Pretrained

0.4 - =@~ NGS-MAPO
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—@- NGS-BS

0.3 1

30 40 50 60 70 80 % 100
Percentage of Data Used(%)
25% S50% 75% 100%
0.170 0.170 0.170 0.170
0.316 0481 0.785 0.967
0916 0.945 0.959 0.964
0.962 0983 0.985 0.991]
0.988 0.992 0.995 0.997
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Examples
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Examples
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Neural Symbolic VQA

* NS-VQA on CLEVR [1]

* Replace the Seq2Seq question
parser with Pointer Network

[1] Y1, Kexin, et al. "Neural-symbolic VQA:
Disentangling reasoning from vision and
language understanding." NeurIPS 2018.



Examples

Q: Are there any cylinders | exist | Error exist no
behind the brown ball? A: no [__filter_color[brown] | Error — {}
| relate[behind] | Error 1-BS relate[behind] {}
unique | Eror == —==-- > | unique |@
| filter_shape[sphere] | {} [ Tilter_shape[sphere] | {4)}
[ Tilfter sha_.Echlindcr] | {O} - filter_color[brown] {1}
| Scene 1 {O @ 'ME‘.»' l scene | {(j:"- {2}! @:}! @r '@! @}
0 ither tiny | count | 1 | count | 0
H ,Hs;w many EH!E are eimner
blue objects or metal things? A: 0 fillter_color{blue] {@} _ 1] l}@_} _ {
union _ 3. @} _ @@}
filter_shapetcube] ]} Fiter_materialimetal] | (3, @) _{@} filer_material[meta]
filter_size[small] |{2), @)} (@.2.3.@) filter_size[small] |{2,@} [ scene (@, 2,3, @)}
scene | (1,2,@, @) ©.2.0.®
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Conclusions & Future works

* RL 1s inefficient for weakly-supervised neural-symbolic learning.
* Back-Search boosts neural-symbolic learning.
* m-BS 1s a Metropolis-Hastings sampler for the posterior distribution.

* Back-search might be applied to a variety of neural-symbolic tasks,
such as semantic parsing, math word problem.

* How to incorporate grammar learning and logic induction 1s still an
open problem.



Thank you!

Project: https://liging-ustc.github.io/NGS/

Code: https://github.com/liging-ustc/NGS
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