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Learning “opinions” in social 
networks

• a social media company (say Facebook) runs a poll 

• ask users: “have you heard about the new product?” 

• awareness of product propagates in social network 

• observe: responses from some random users 

• goal: infer opinions of users who did not respond



more generally, “opinions” can be: 

• awareness about a new product / political candidate 
/ news item 

• spread of a biological / computer virus

Learning “opinions” in social 
networks



this talk: 

• review propagation of opinions in social 
networks 

• how to measure the complexity of a network for 
learning opinions? 

• how to learn opinions with random 
propagation, when the randomness is 
unknown?



Related research topics

• learning propagation models: given outcome of 
propagation, infer propagation model 

(Liben-Nowell & Kleinberg, 2007; Du et al., 2012; 2014; Narasimhan et al., 2015; etc) 

• social network analysis & influence maximization: 
given fixed budget, try to maximize influence of some 
opinion 

(Kempe et al., 2003; Faloutsos et al., 2004; Mossel & Roch, 2007; Chen et al., 2009; 2010; Tang et al., 2014; etc)



Information propagation in 
social networks

a simplistic model: 

• network is a directed graph G = (V, E) 

• a seed set S0 of nodes which are initially informed 
(i.e., active) 

• active nodes deterministically propagate the 
information through outgoing edges



Information propagation in 
social networks

S0

S0: seed set that is initially active



Information propagation in 
social networks

S1: active nodes after 1 step of propagation

S1



Information propagation in 
social networks

S2: active nodes after 2 steps of propagation

S2



Information propagation in 
social networks

S3: active nodes after 3 steps of propagation

S3



Information propagation in 
social networks

propagation stops after step 2 
final active set S2 = S3 = … = S∞

S∞



PAC learning opinions
S∞

• fix G, unknown seed set S0 and distribution 𝒟 over V 
• observe m iid labeled samples {(ui, oi)}i, where for each i, 

ui ~ 𝒟, and oi = 1 iff ui in S∞ 
• based on the sample set, predict if u in S∞ for u ~ 𝒟
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• key challenge: how to generalize from observations to 
future nodes to make predictions for 

• common sense: generalization is impossible without 
some prior knowledge 

• so what prior knowledge do we have? 
• answer: structure of the network

PAC learning opinions



Implicit hypothesis class
1

2 4

3S∞

for any pair of nodes u, v where u can reach v: 
• if u is in S∞, then v must be in S∞ (e.g., u = 1, v = 2) 
• equivalently, if v is not in S∞, then u must not be in S∞ 

(e.g., u = 3, v = 4)
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for any pair of nodes u, v where u can reach v: 
• if u is in S∞, then v must be in S∞ (e.g., u = 1, v = 2) 
• equivalently, if v is not in S∞, then u must not be in S∞ 

(e.g., u = 3, v = 4) 
• implicit hypothesis class associated with G = (V, E): 

family of all sets H of nodes consistent with the above 
(i.e., if u can reach v, then u in H implies v in H) 

• implicit hypothesis class can be much smaller than 2V

Implicit hypothesis class



H1H2H3H4H5H6

implicit hypothesis class ℋ = {H0, H1, H2, H3, H4, H5, H6} 
where H0 = ∅ is the empty set 

|V| = 6, |2V| = 64, |ℋ| = 7

Implicit hypothesis class



• VC(G): VC dimension of implicit hypothesis class 
associated with network G 

• VC(G) = size of largest “independent” set (aka width), 
within which no node u can reach another node v

VC theory for deterministic 
networks



blue nodes: independent

VC theory for deterministic 
networks



green nodes: independent

VC theory for deterministic 
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orange nodes: not independent

VC theory for deterministic 
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orange nodes: not independent

VC theory for deterministic 
networks



• VC(G): VC dimension of implicit hypothesis class 
associated with network G 

• VC(G) = size of largest “independent” set (aka width), 
within which no node u can reach another node v 

• VC(G) can be computed in polynomial time 
• sample complexity of learning opinions: 

Õ(VC(G) / 𝛆)

VC theory for deterministic 
networks



Why width?

LB: 𝒟 is uniform over a maximum independent set
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Why width?

UB: number of chains to cover G = VC(G) 
need to learn one threshold for each chain



Why width?

UB: number of chains to cover G = VC(G) 
need to learn one threshold for each chain

in S∞

not in S∞



• so far: VC theory for deterministic 
networks 

• next: the case of random networks



• propagation of opinions is inherently random 
• randomness in propagation = randomness in network 

• random network 𝒢: distribution over deterministic graphs 

• propagation: draw G ~ 𝒢, propagate from seed set S0 in G

Random social networks



• random network 𝒢: distribution over deterministic networks 

• propagation: draw G ~ 𝒢, propagate from seed set S0 in G 

• PAC learning opinions: fix 𝒢, unknown S0 and 𝒟 

• graph G ~ 𝒢 realizes (unknown to algorithm), propagation 

happens from S0 in G and results in S∞ 
• algorithm observes m labeled samples, tries to predict S∞ 

• “random” hypothesis class — VC theory no longer applies

Random social networks



Random social networks

• S0: information to recover, G: noise 
• learning is impossible when noise overwhelms information 
• hard instance: nodes form a chain in a uniformly random 

order, S0 = {node 1} 
• learning the label of any other node requires Ω(n) samples



Random social networks

• S0: information to recover, G: noise 
• learning is impossible when noise overwhelms information 
• when noise is reasonably small: 

Õ(𝔼[VC(G)] / 𝛆) samples are enough to learn opinions 

up to the intrinsic resolution of the network



Random social networks
when noise is reasonably small: 

Õ(𝔼[VC(G)] / 𝛆) samples are enough to learn opinions 

sketch of algorithm: 

• draw iid sample realizations Gj ~ 𝒢 of the network 

• for each Gj, find the ERM Hj on Gj with the observed 
sample set {(ui, oi)}, by computing an s-t min-cut 

• output H = node-wise majority vote by {Hj}, i.e., each node 
u is in H iff u is in at least half of {Hj}



Algorithm for ERM
in S∞

not in S∞



Algorithm for ERM
S

T
solid edges: capacity = ∞ 

dashed edges: capacity = 1



Algorithm for ERM
S

T X
edges being cut: X, nodes on S side: M 

total capacity of S-T mincut = 1



Algorithm for ERM

misclassified 
by ERM

in S∞

not in S∞



Random social networks

• each ERM Hj has expected error 𝛆 

• ... but probability of high error is still large 
• use majority voting to boost probability of success



Future directions

• other propagation models 
• non-binary / multiple opinions 
• …



Thanks for your attention!
Questions?


