Uncertainty-Aware Lookahead Factor Models for Improved Quantitative Investing

Lakshay Chauhan, John Alberg, Zachary Lipton

Improve quantitative investing by forecasting fundamentals and measuring uncertainty

Quantitative Investing

- Portfolios are constructed by ranking stocks using a factor
- factors based on fundamentals such as Revenue, Income, Debt
- Standard quantitative investing uses current fundamentals

Can we use forecast future fundamentals then?

Overview

Improve quantitative investing by forecasting fundamentals and measuring uncertainty

Our Contribution

- Show value of forecasting fundamentals
- Forecast future fundamentals using neural networks and measure uncertainty
- Use uncertainty estimate to reduce risk as measured by Sharpe Ratio
- Portfolio return and risk are significantly improved

Motivation

Quantitative Investing

Factors Dividend Yield Earnings Yield Book-to-Market

Momentum

Value Factors

Fundamental Item (net income, EBIT) Stock Price

Value factors outperform market averages (SP500)

Limitation

Factor models rely on current period fundamentals, but returns are driven by future fundamentals

Solution

Build factor models using forecast future fundamentals

Clairvoyant Factor Model

- Imagine we had access to **future** fundamentals
- Simulate performance with **future** fundamentals (2000-2019)
- Clairvoyant fundamentals offer substantial advantage
- This motivates us to forecast future fundamentals

Problem Set up

euclidean•••

technologies

- Use EBIT as the fundamental to create value-factor
- Forecast EBIT 12 months into the future

Data Background

- US stocks from 1970-2019 traded on NYSE, NASDAQ and AMEX (~12,000), Market Cap > \$100M
- Time series of 5 years with step size of 12 months

	Input Series					Target
IBM	Jan, 2000	Jan, 2001	Jan, 2002	Jan, 2003	Jan, 2004	Jan, 2005
IBM	Feb, 2000	Feb, 2001	Feb, 2002	Feb, 2003	Feb, 2004	Feb, 2005
IBM	Mar, 2000	Mar, 2001	Mar, 2002	Mar, 2003	Mar, 2004	Mar, 2005

• Feature Examples

Fundamental	Momentum	Auxiliary
Revenue	1-month relative momentum	Short Interest
Cost of Goods Sold	3-month relative momentum	Industry Group
Earnings Before Interest and Taxes (EBIT)	6-month relative momentum	Company size category
Current Debt	9-month relative momentum	
Long Term Debt		

Forecasting Model

- In-sample validation set is used for genetic algorithm based hyper-parameter tuning
- Multi-task learning to predict all fundamental features instead of just EBIT
 - Increases training signal
 - Improves generalization
- Use Max Norm and Dropout for regularization

Uncertainty Quantification

- Financial data is heteroskedastic i.e. noise is data dependent
- Some companies will have more uncertainty in their earnings than others due to size, industry, etc.
- Jointly model mean and variance by splitting final layer
 - First half predicts means of targets $(f_{ heta}(\mathbf{x}))$
 - Second half predicts variance of the output values or aleatoric uncertainty $~~(g_ heta(\mathbf{x}))$

$$\boldsymbol{\theta}^{\text{MLE}} = \max_{\boldsymbol{\theta}} \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi g_{\boldsymbol{\theta}}(\mathbf{x}_{i})^{2}}} \exp\left(\frac{-(y_{i} - f_{\boldsymbol{\theta}}(\mathbf{x}_{i}))^{2}}{2g_{\boldsymbol{\theta}}(\mathbf{x}_{i})^{2}}\right)$$

$$= \min_{\boldsymbol{\theta}} \sum_{i=1}^{n} \left(\log(g_{\boldsymbol{\theta}}(\mathbf{x}_{i})) + \frac{(y_{i} - f_{\boldsymbol{\theta}}(\mathbf{x}_{i}))^{2}}{2g_{\boldsymbol{\theta}}(\mathbf{x}_{i})^{2}}\right)$$

$$= \min_{\substack{n \in \mathbb{N} \\ \text{minimize uncertainty} \\ (narrow bounds)}} \exp\left(\frac{-(y_{i} - f_{\boldsymbol{\theta}}(\mathbf{x}_{i}))^{2}}{2g_{\boldsymbol{\theta}}(\mathbf{x}_{i})^{2}}\right)$$

Epistemic Uncertainty = Variance in outputs across Monte Carlo draws of dropout mask

Total Uncertainty = Aleatoric Uncertainty + Epistemic Uncertainty

Constructing Factor Models

<u>Definitions</u>				
EV - Enterprise Value				
$market \ cap + net \ debt$				
QFM - Quantitative Factor Model				
$\frac{EBIT_{current}}{EV}$				
LFM - Lookahead Factor Model				
$\frac{EBIT_{forecast}}{EV}$				
LFM UQ – Uncertainty Quantified Model				
$\frac{EBIT_{forecast}}{\sigma^2 EV}$ Companies with higher variance are riskier Higher variance = less certain about forecasts Therefore, scale factor in inverse proportion to variance				

Factor Models

QFM

LFM Auto Reg

LFM Linear

LFM MLP

LFM LSTM

LFM UQ-MLP

LFM UQ-LSTM

Portfolio Simulation

- Industry grade, high fidelity investment portfolio simulator
- Portfolios formed of top 50 stocks ranked by factor
- Rebalance portfolio monthly
- Simulate 50 years of performance, many economic cycles
- Point-in-time data, no survivorship or look-ahead bias
- Include transactions cost, price slippage to reflect realistic trading
- Measure performance by Compound Annualized Return (CAR) and Sharpe Ratio

Simulated returns of a quantitative strategy vs. the real returns generated from live trading of the same strategy

Strategy	MSE	CAR	Sharpe Ratio
S&P 500	n/a	6.05%	0.32
QFM	0.65	14.0%	0.52
LFM Auto Reg	0.58	14.2%	0.56
LFM Linear	0.52	15.5%	0.64
LFM MLP	0.48	16.1%	0.68
LFM LSTM	0.48	16.2%	0.68
LFM UQ-LSTM	0.48	17.7 %	0.84
LFM UQ-MLP	0.47	$\mathbf{17.3\%}$	0.83

Out-of-Sample Performance 2000-2019

Pairwise t-statistic for Sharpe ratio with α =0.05

	Auto-Reg	Linear	MLP	LSTM	UQ-LSTM	UQ-MLP
QFM	0.76	2.52	2.93	2.96	5.57	6.01
Auto Reg		1.89	2.31	2.36	5.10	5.57
Linear			0.36	0.46	3.12	3.66
MLP				0.10	2.82	3.39
LSTM					2.66	3.22

Cumulative return of different strategies from 2000 to 2019

- Forecasting fundamentals is valuable in quantitative investing
- Use DNN to forecast future fundamentals and estimate uncertainty
- Improve return and Sharpe ratio

Thank You

lakshay.chauhan@euclidean.com john.alberg@euclidean.com zlipton@cmu.edu

