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The Biclustering Problem

Task

Given a data matrix X 2 Rn⇥p
, find subgroups of rows & columns that go

together.

Text mining: similar documents share a small set of highly correlated words.

Collaborative filtering: likeminded customers share similar preferences for a

subset of products

Cancer genomics: subtypes of cancerous tumors share similar molecular

profiles over a subset of genes
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Cancer Genomics

Lung cancer is heterogenous at the molecular level

Which genes are driving lung cancer?

These genes are potential drug targets

Collect expression data
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Simple Solution: Cluster Dendrogram

Each dendrogram is constructed independently of multiscale structure in

other dimension.
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From Co-clustering to Co-Manifold Learning

I would add that in many real-world applications there is no “true” fixed

number of biclusters, i.e. the truth is a bit more continuous...

–Anonymous Referee 2

Clustered Dendrogram
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What if data matrices are not completely observed?

Missing data scenario

Complete data: X 2 Rn⇥p

Suppose we only get to observe ⇥ ⇢ {1, . . . , n}⇥ {1, . . . , p}.
Possibly by design: too expensive to collect / measure all np possible entries

Goal: Recover row and column coordinate systems, not necessarily complete

missing data
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Co-Manifold Learning

Solve co-clustering-missing problem at multiple row and column scales

Build multiscale row and column metrics

Calculate non-linear embeddings
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Step 1: Co-clustering an Incomplete Data Matrix

min

U

F (U) =

1

2

kP
⌦

(X�U)k2
F

+ �c
X

i<j

⌦(kU·i �U·jk2) + �r
X

k<l

⌦(kUk· �Ul·k
2

)
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Folded concave penalty =) less bias towards 0
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Step 1: Majorization-Minimization (MM)

G (U | V) = 1

2

kX̃�Uk2
F

+ �c
X

i<j

w̃c,ijkU·i �U·jk2 + �r
X

k<l

w̃r ,kl kUk· �Ul·k
2

+ c

X̃ = P
⌦

(X) + P
⌦

c
(V)

w̃c,ij = ⌦

0
(kV·i � V·jk2) and w̃r ,kl = ⌦

0
(kVk· � Vl·k2)

Can be solved with Convex Bi-clustering [Chi et al. 2017].
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Step 1: Majorization-Minimization (MM)

Majorization:

G (U | V) = 1

2

kX�Uk2
F

+ �c
X

i<j

w̃c,ijkU·i �U·jk2 + �r
X

k<l

w̃r ,kl kUk· �Ul·k
2

+ c

F (U) = G (U | U)

F (U)  G (U | V) for all U

MM: Solve sequence of Convex Biclustering Problems

Ut+1

= argmin

U

G (U | Ut)

Proposition

Under suitable regularity conditions, the sequence Ut generated by Algorithm 1

has at least one limit point, and all limit points are d-stationary points of

minimizing F (U).
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Step 1: Smoothing Rows and Columns at Di↵erent Scale
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Co-Manifold Learning

Solve co-clustering-missing problem at multiple row and column scales

Build multiscale row and column metrics

Calculate non-linear embeddings
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Step 2: Multiscale metric

Intuition:

Pair of rows are close over multiple scale ! distance should be small

Pair of rows are far apart over multiple scales ! distance should be big

Step 1: Fill in X over multiple �r , �c scales: X̃

(r ,c)
= P

⇥

(X) + P
⇥

c
(U(�r , �c))

Step 2: Take weighted combination over all scales of pairwise distances

d(Xi·,Xj·) =

X

r ,c

(�r�c)
↵kX̃

(r ,c)

i· � X̃

(r ,c)

j· k
2

↵ tunable to emphasize local versus global structure
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Co-Manifold Learning

Solve co-clustering-missing problem at multiple row and column scales

Build multiscale row and column metrics

Calculate non-linear embeddings
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Step 3: Spectral Embedding

Example: Di↵usion Map (Coifman & Lafon, 2006)

Construct an a�nity matrix

A[i , j ] = exp{�d

2

(Xi·,Xj·)/�
2}

Compute row-stochastic matrix

P = D

�1

A, D[i , i ] =
X

j

A[i , j ]

Eigendecomposition of P: keep first d eigenvalues and eigenvectors

Mapping  embeds the rows into the Euclidean space Rd
:

 : Xi· !
�
�
1
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Some Examples
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Some Examples
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Lung500 

Linkage 

Quantitative evaluation  
via clustering
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