Multi-Frequency Vector Diffusion Maps

Yifeng Fan, Zhizhen Zhao

Department of Electrical and Computer Engineering
Coordinated Science Laboratory University of Illinois at Urbana-Champaign

The 36th International Conference on Machine Learning, Long Beach, CA, USA June $12^{\text {th }} 2019$

Motivation

Geometry of cryo-electron microscopy single particle images:

Projection images

Underlying views

Nonlinear dimensionality reduction:

- Locally linear embedding (LLE), ISOMAP, Hessian LLE, Laplacian eigenmaps, Diffusion maps (DM).
- Vector diffusion maps (VDM) generalizes diffusion maps (DM) to define heat kernels for vector fields on the manifold.

Problem setup

- Given a dataset $x_{i} \in \mathbb{R}^{\prime}$ for $i=1, \ldots, n$:

$$
\begin{aligned}
& \mathcal{G} \text {-invariant distance: } d_{i j}=\min _{g \in \mathcal{G}}\left\|x_{i}-g \cdot x_{j}\right\|, \\
& \text { optimal alignment: } g_{i j}=\underset{g \in \mathcal{G}}{\arg \min }\left\|x_{i}-g \cdot x_{j}\right\| .
\end{aligned}
$$

- Data points lie on or close to a low-dimensional manifold \mathcal{X} and we define $\mathcal{M}=\mathcal{X} / \mathcal{G}$.
- Define neighborhood graph based on the invariant distance: $G=(V, E)$ by $(i, j) \in E \Leftrightarrow d_{i j} \leq \epsilon$, with the associated alignment $g_{i j} \in \mathcal{G}$.
- In cryo-EM single particle images example, $\mathcal{G}=\mathrm{SO}(2)$, which is the in-plane rotation within each image.

Multi-frequency vector diffusion maps

- Challenge: Noisy data induces inaccurate low-dimensional embedding.
- Goal: Robustly learn the nonlinear geometrical structure of data from noisy measurements to improve nearest neighbor search and alignment.
- Our work: Multi-frequency vector diffusion maps (MFVDM).
(1) Extend VDM by using multiple irreducible representation.
(2) Achieve more accurate nearest neighbor identification and alignment.

Multi-frequency vector diffusion maps

- Intuition: For neighbor points in \mathcal{M}, the alignments should have cycle consistency across multiple irreducible representations, e.g., for neighbor nodes i, j and I, for each $k \in \mathbb{Z}$,

$$
k\left(\alpha_{i j}+\alpha_{j l}+\alpha_{l i}\right) \approx 0 \bmod 2 \pi
$$

- MFVDM builds a series of weight matrices W_{k} for $k=1, \ldots, k_{\max }$:

$$
W_{k}(i, j)= \begin{cases}w_{i j} e^{\imath k \alpha_{i j}} & (i, j) \in E \\ 0 & \text { otherwise }\end{cases}
$$

Degree matrix $D(i, i)=\sum_{j:(i, j) \in E} w_{i j}$.

VDM for each frequency k

- Define the affinity matrix S_{k} for frequency k :

$$
S_{k}=D^{-1 / 2} W_{k} D^{-1 / 2}=\sum_{l=1}^{n} \lambda_{l}^{(k)} u_{l}^{(k)}(i) \overline{u_{l}^{(k)}(j)}
$$

with $\lambda_{1}^{(k)} \geq \lambda_{2}^{(k)} \geq \ldots \geq \lambda_{n}^{(k)}$.

- The affinity between i and j is given as $\left|S_{k}^{2 t}(i, j)\right|$.
- VDM mapping for frequency k :

$$
\hat{V}_{t}^{(k)}: i \mapsto\left(\left(\lambda_{l}^{(k)} \lambda_{r}^{(k)}\right)^{t}\left\langle u_{l}^{(k)}(i), u_{r}^{(k)}(i)\right\rangle\right)_{I, r=1}^{m_{k}}
$$

We call this frequency- \boldsymbol{k}-VDM, $m_{k} \ll n$ is a truncation parameter.

Multi-frequency vector diffusion maps

- Multi-frequency vector diffusion maps: Concatenate $\hat{V}_{t}^{(k)}$ for $k=1, \ldots, k_{\text {max }}$:

$$
\hat{V}_{t}(i): i \mapsto\left(\hat{V}_{t}^{(1)}(i) ; \hat{V}_{t}^{(2)}(i) ; \ldots ; \hat{V}_{t}^{\left(k_{\text {max }}\right)}(i)\right) .
$$

- Multi-frequency vector diffusion distance:

$$
d_{\text {MFVDM }, t}^{2}(i, j)=\left\|\frac{\hat{V}_{t}(i)}{\left\|\hat{V}_{t}(i)\right\|}-\frac{\hat{V}_{t}(j)}{\left\|\hat{V}_{t}(j)\right\|}\right\|_{2}^{2} .
$$

- Using multiple irreducible representation leads to a highly robust measure of neighbor points on \mathcal{M}.

Nearest neighbor identification \& alignment

- Identify nearest neighbors based on $d_{\text {MFVDM }, t}^{2}(i, j)$.
- Experiments: simulate $n=10^{4}$ on a 2 -sphere, the group transformation $\mathcal{G}=\mathrm{SO}(2)$. We connect each point with its 150 neighbors, optimal alignment has been pre-computed.
- Noise is added following the random rewiring model:

$$
(i, j) \in E= \begin{cases}(i, j) & \text { with probability } p \\ (i, j) \rightarrow(i, I), \alpha_{i l} \in \operatorname{Unif}[0,2 \pi) & \text { with probability } 1-p\end{cases}
$$

Nearest neighbor identification \& rotational alignment

- Histograms of nearest neighbor identification accuracy (The histogram with more points close to 0 is better) and rotational alignment errors.
- MFVDM is very robust to noise.

Thank you!

- Poster \#266: Wed Jun 12th 06:30-09:00 PM @ Pacific Ballroom.
- Our paper is available at: http://proceedings.mlr.press/v97/fan19a/ fan19a.pdf

