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a) Multi-label Classification [Behpour et al. 2018]

b) Video Tracking
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Labeling can be

• Time consuming, e.g., document classification

• Expensive, e.g., medical decision (need doctors)

• Sometimes dangerous, e.g., landmine detection
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Previous methods:

➢CRF

➢SSVM

➢ Intractable

➢ SVM Platts [Lambrou et al., 2012; Platt, 1999] ➔ Unreliable

➢ Complication of Interpretation for multi-class

Motivation

Active learning methods, like uncertainty sampling, combined with probabilistic prediction 

techniques [Lewis & Gale, 1994; Settles, 2012] have been successful.



1- Leveraging Adversarial prediction methods [Behpour et al. 2018]:

- An Adversarial approximation of the training data labels, ෘ𝑃(�ු�|𝑥)
- A predictor, 𝑃( ො𝑦|𝑥), that minimizes the expected loss against the

worst-case distribution chosen by the adversary. 

Our approach



2- Computing Mutual Information to measure reduction in uncertainty

[Guo and Greiner 2007].

Marginal entropy of Marginal entropy of 

The mutual information of two discrete random variable a and b:

( the amount of the information which is held between a and b)

Joint entropy of           and 

Our approach



y = [Sea, Ship, Sheep, Horse, Dog, Person, Mountain, Wolf, Tree]

[0 1 0 1 0 1 1 0 1]𝑇

[0 1 0 1 0 0 0 1 1]𝑇

[1 1 1 0 0 1 1 0 1]𝑇

L ([0 1 0 1 0 1 1 0 1]𝑇, [0 0 1 0 1 1 0 1 1]𝑻)
+ 𝝋 ([0 0 1 0 1 1 0 1 1]𝑻)

L ([0 1 0 1 0 1 1 0 1]𝑇, [0 0 0 0 0 1 1 1 1]𝑻)
+ 𝝋 ([0 0 0 0 0 1 1 1 1]𝑻)

L ([0 1 0 1 0 1 1 0 1]𝑇, [0 0 0 1 1 0 1 1 1]𝑻)
+ 𝝋 ([0 0 0 1 1 0 1 1 1]𝑻)

L ([0 1 0 1 0 0 0 1 1]𝑇, [0 0 1 0 1 1 0 1 1]𝑻)
+ 𝝋 ([0 0 1 0 1 1 0 1 1]𝑻)

L ([1 1 1 0 0 1 1 0 1]𝑇, [0 0 1 0 1 1 0 1 1]𝑻)
+ 𝝋 ([0 0 1 0 1 1 0 1 1]𝑻)

L ([0 1 0 1 0 0 0 1 1]𝑇, [0 0 0 0 0 1 1 1 1]𝑻)
+ 𝝋 ([0 0 0 0 0 1 1 1 1]𝑻)

L ([1 1 1 0 0 1 1 0 1]𝑇, [0 0 0 0 0 1 1 1 1]𝑻)
+ 𝝋 ([0 0 0 0 0 1 1 1 1]𝑻)

L ([0 1 0 1 0 0 0 1 1]𝑇, [0 0 0 1 1 0 1 1 1]𝑻)
+ 𝝋 ([0 0 0 1 1 0 1 1 1]𝑻)

L ([1 1 1 0 0 1 1 0 1]𝑇, [0 0 0 1 1 0 1 1 1]𝑻)
+ 𝝋 ([0 0 0 1 1 0 1 1 1]𝑻)

P(�ු�=[0 0 1 0 1 1 0 1 1]𝑻) = 𝟐𝟓% P(�ු�=[0 0 0 0 0 1 1 1 1]𝑻) = 𝟑𝟐% P(�ු�=[0 0 0 1 1 0 1 1 1]𝑻) = 𝟒𝟑%

�ු�=[0 0 1 0 1 1 0 1 1]𝑻 �ු�=[0 0 0 0 0 1 1 1 1]𝑻 �ු�=[0 0 0 1 1 0 1 1 1]𝑻

Game Matrix for Multi- label prediction



Marginal entropy  

Sample selection strategy

The total expected reduction in uncertainty over all variables,  𝑌1, . . . , 𝑌𝑛, 

from Observing a particular variable  𝑌𝑗



Labeled data pool

Train a model

Unlabeled data pool

∅𝑖 , ∅𝑖,𝑗

Test the model Analyze unlabeled

data pool

Solicit the sample with 

the highest 𝑉𝑗Y=[? 1 ? ? ? ? ? ? ?]

Return the sample 

if there is any unannotated label.
Add/ update the sample

Y=[? 1 ? ? ? ? ? ? ?]

Active Learning for Cuts



a) Bibtex b) Bookmarks                 c) CAL500                    d) Corel5K

Multi-label Experiments

e) Enron                   f)  NUS-WIDE                g) TMC2007                     h) Yeast



a) ETH-BAHNHOF              b) TUD-CAMPUS              c) TUD-STADTMITTE              d) ETH-SUN

Tracking Experiments

e) BAHNHOF-PEDCROSS2       f) CAMPUS-STAD               g) SUN-PEDCROSS2             h) BAHNHOF-SUN



Leveraging Adversarial Structured Predictions

➢ Adversarial Robust Cut

Adversary probability distribution

correlations between unknown label variables

Useful in estimating

the value of information for different annotation solicitation decisions.

Better performance and lower computational complexity

➢Adversarial Bipartite Matching

Conclusion



Thank You!

Please visit our poster

at Pacific Ballroom #264


