

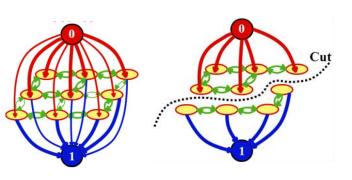
Active Learning for Probabilistic Structured Prediction of Cuts and Matchings

Sima Behpour, University of Pennsylvania Anqi Liu, California Institute of Technology Brian D. Ziebart, University of Illinois at Chicago

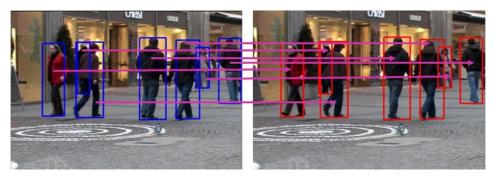
Motivation

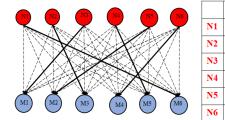
a) Multi-label Classification [Behpour et al. 2018]

Sea	0
Ship	0
Sheep	0
Wolf	0
Mountain	1
Person	1
Dog	1
Horse	1
Tree	1



b) Video Tracking





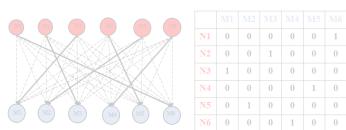
Motivation

a) Multi-label Classification [Behpour et al. 2018] Ship

Labeling can be

- Time consuming, e.g., document classification
- Expensive, e.g., medical decision (need doctors)

b) Video Tr Sometimes dangerous, e.g., landmine detection



()

()

0

()

Sheep

Wolf

Mountain

Motivation

Active learning methods, like **uncertainty sampling**, combined with **probabilistic prediction techniques** [Lewis & Gale, 1994; Settles, 2012] have been successful.

Previous methods: ≻CRF $\mathbf{w}^* = \arg \max_{\mathbf{w}} \prod_{n=1}^{N} p(\mathbf{y}_n | \mathbf{x}_n, \mathbf{w}) \quad p(\mathbf{y} | \mathbf{x}, \mathbf{w}) = \frac{\exp(\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y}))}{\sum_{\mathbf{y}} \exp(\mathbf{w}^T \phi(\mathbf{x}, \mathbf{y}))}$ Intractable $\min_{oldsymbol{w}} \quad \|oldsymbol{w}\|^2 + C\sum_{n=1}^\ell \max_{y\in\mathcal{Y}} \left(0,\Delta(y_n,y) + \langleoldsymbol{w},\Psi(oldsymbol{x}_n,y) ight angle - \langleoldsymbol{w},\Psi(oldsymbol{x}_n,y_n) angle)$ **≻SSVM** SVM Platts [Lambrou et al., 2012; Platt, 1999] → Unreliable Complication of Interpretation for multi-class

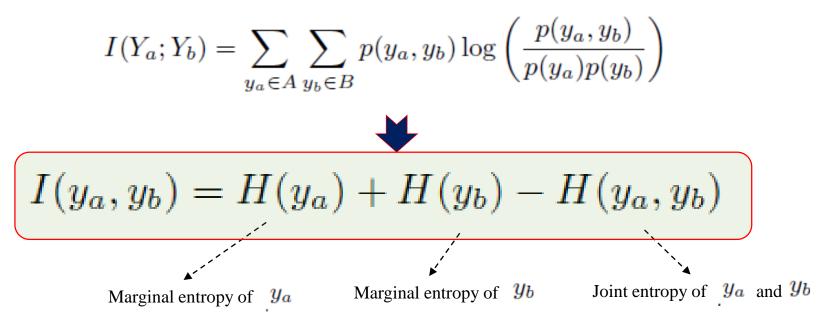
Our approach

- 1- Leveraging Adversarial prediction methods [Behpour et al. 2018]:
- An Adversarial approximation of the training data labels, $\check{P}(\check{y}|x)$
- A predictor, $\hat{P}(\hat{y}|x)$, that minimizes the expected loss against the worst-case distribution chosen by the adversary.

Sink

2- Computing Mutual Information to measure reduction in uncertainty [Guo and Greiner 2007].

The mutual information of two discrete random variable a and b: (the amount of the information which is held between a and b)



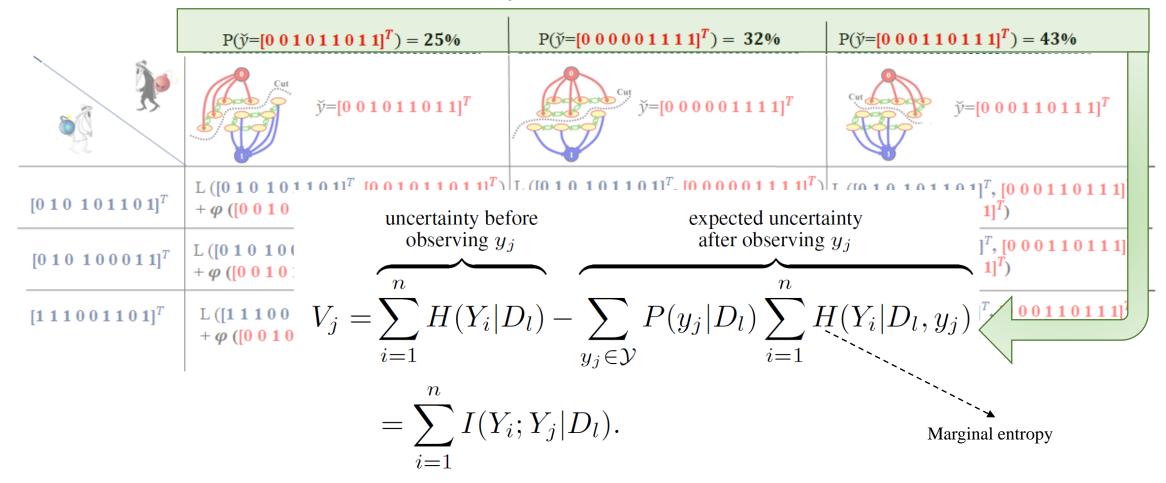
Game Matrix for Multi- label prediction

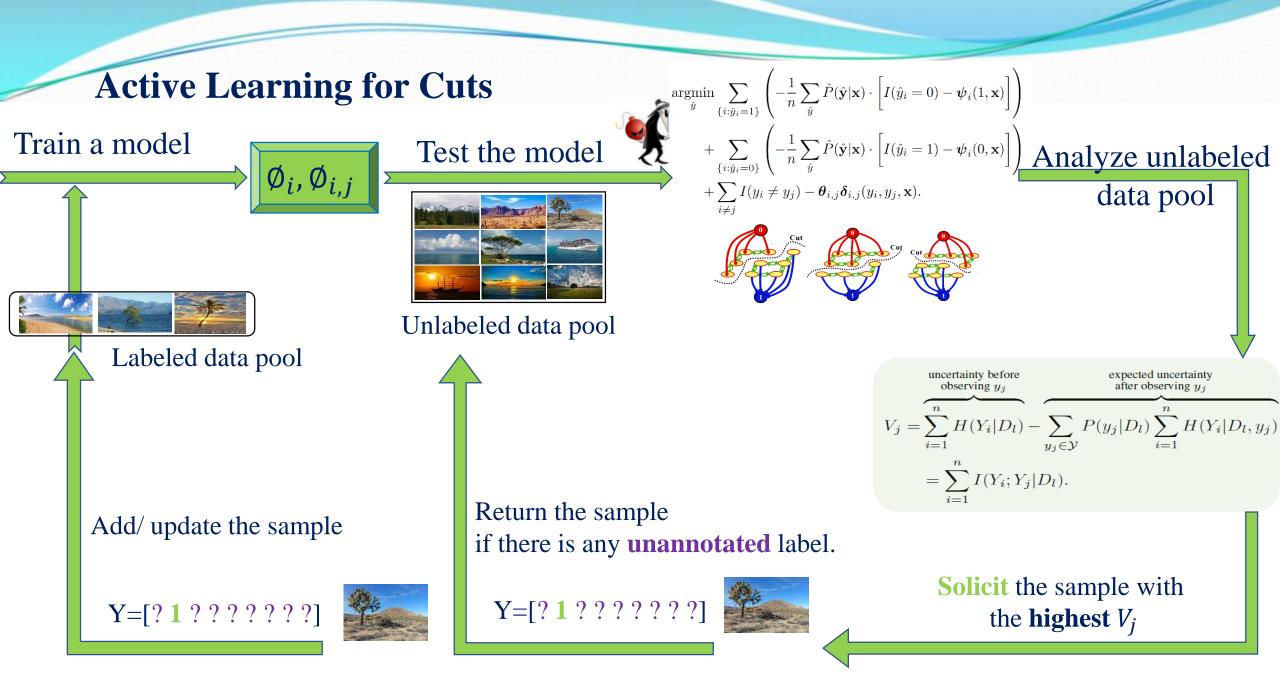
y = [Sea, Ship, Sheep, Horse, Dog, Person, Mountain, Wolf, Tree]

X	$P(\check{y} = [0\ 0\ 1\ 0\ 1\ 1\ 0\ 1\ 1]^T) = 25\%$	$P(\check{y}=[0\ 0\ 0\ 0\ 0\ 1\ 1\ 1\]^T)=\ 32\%$	$P(\check{y} = [0\ 0\ 0\ 1\ 1\ 0\ 1\ 1\]^T) = 43\%$
	$\tilde{y} = [0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1]^T$	$\tilde{y} = [0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1]^T$	$\tilde{y} = [0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1]^T$
$[0\ 1\ 0\ 1\ 0\ 1\ 0\ 1]^T$	L ([0 1 0 1 0 1 1 0 1] ^T , [0 0 1 0 1 1 0 1] ^T)	L ([0 1 0 1 0 1 1 0 1] ^T , [0 0 0 0 0 1 1 1 1] ^T)	L ([0 1 0 1 0 1 1 0 1] ^T , [0 0 0 1 1 0 1 1 1] ^T)
	+ φ ([0 0 1 0 1 1 0 1 1] ^T)	+ φ ([0 0 0 0 0 1 1 1 1] ^T)	+ φ ([0 0 0 1 1 0 1 1 1] ^T)
$[0\ 1\ 0\ 1\ 0\ 0\ 1\ 1]^T$	L ([0 1 0 1 0 0 1 1] ^T , [0 0 1 0 1 1 0 1 1] ^T)	L ([0 1 0 1 0 0 0 1 1] ^T , [0 0 0 0 0 1 1 1 1] ^T)	L ([0 1 0 1 0 0 0 1 1] ^T , [0 0 0 1 1 0 1 1 1] ^T)
	+ φ ([0 0 1 0 1 1 0 1 1] ^T)	+ φ ([0 0 0 0 0 1 1 1 1] ^T)	+ φ ([0 0 0 1 1 0 1 1 1] ^T)
$[1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 1]^T$	L ([1 1 1 0 0 1 1 0 1] ^T , [0 0 1 0 1 1 0 1 1] ^T)	L ([1 1 1 0 0 1 1 0 1] ^T , [0 0 0 0 0 1 1 1 1] ^T)	L ([1 1 1 0 0 1 1 0 1] ^T , [0 0 0 1 1 0 1 1 1] ^T)
	+ φ ([0 0 1 0 1 1 0 1 1] ^T)	+ φ ([0 0 0 0 0 1 1 1 1] ^T)	+ φ ([0 0 0 1 1 0 1 1 1] ^T)

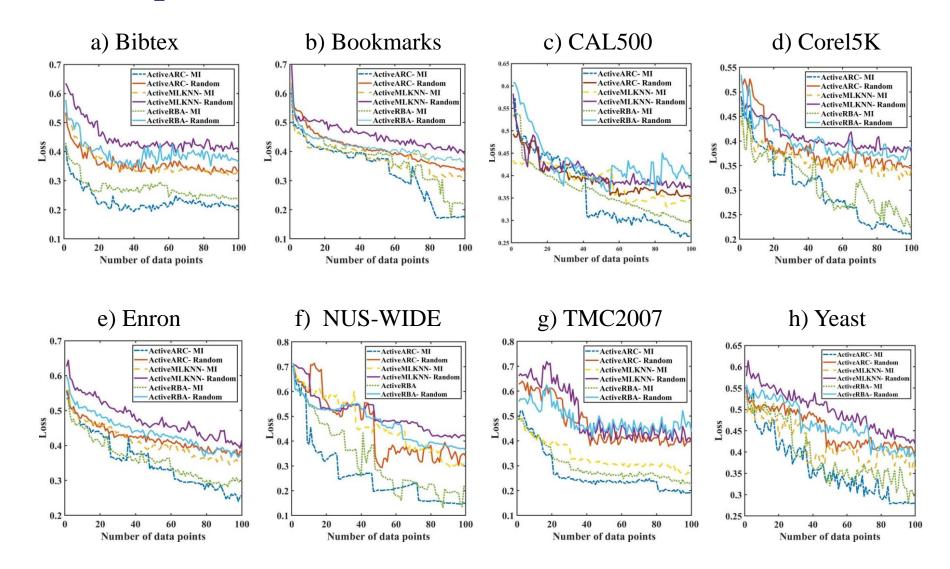
Sample selection strategy

The total expected reduction in uncertainty over all variables, Y_1, \ldots, Y_n , from Observing a particular variable Y_j

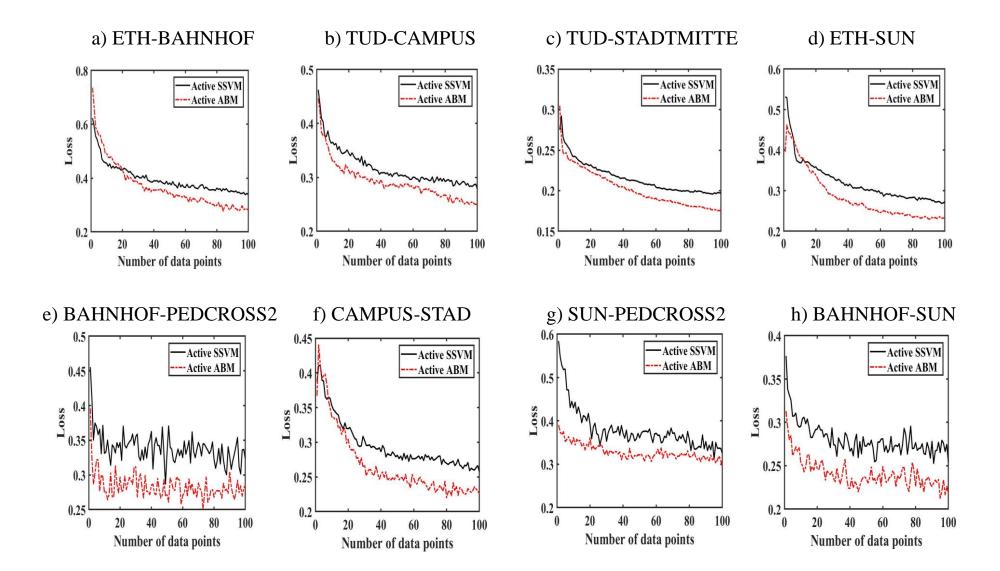




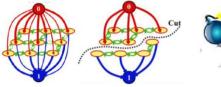
Multi-label Experiments



Tracking Experiments



Conclusion



 $\min_{\hat{P}(\hat{y}|x)} \max_{\check{P}(\check{y}|x)} \mathbb{E}_{\tilde{P}(x)\hat{P}(\hat{y}|x)\check{P}(\check{y}|x)} [\text{Loss}(\hat{Y},\check{Y})]$ such that: $\mathbb{E}_{x \sim \tilde{P}; \check{y} | x \sim \check{P}} \left[\phi(X, \check{Y}) \right] = \check{\mathbf{c}}$

Leveraging Adversarial Structured Predictions

Adversarial Robust Cut
Adversarial Bipartite Matching

Adversary probability distribution

correlations between unknown label variables

Useful in estimating

the value of information for different annotation solicitation decisions.

Better performance and lower computational complexity

Thank You! Please visit our poster at Pacific Ballroom #264