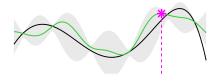
Myopic Posterior Sampling for Adaptive Goal Oriented Design of Experiments

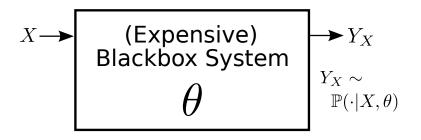


Kirthevasan Kandasamy, Willie Neiswanger, Reed Zhang, Akshay Krishnamurthy, Jeff Schneider, Barnabás Póczos

Carnegie Mellon University Autab Research

ICML 2019

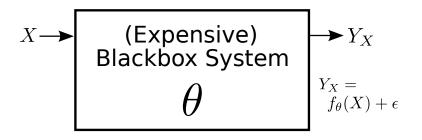
Example 1: Active Learning in Parametric Models



Goal: Learn parameter θ in as few experiments.

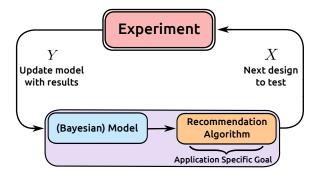
Algorithms: Active-Set-Select (Chaudhuri et al. 2015)

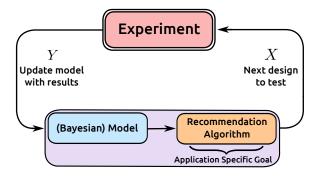
Example 2: Blackbox Optimisation



Goal: Find $\operatorname{argmax}_{x} f_{\theta}(x)$ in as few experiments.

Algorithms: UCB (Srinivas et al 2010, Auer 2002), El (Jones et al 1998).



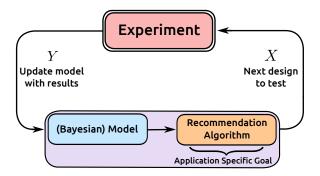


- Blackbox Optimisation
- Active Learning
- Active Quadrature

(Osborne et al. 2012)

- Active Level Set Estimation (Gotovos et al. '13)
 - Active Search (Ma et al. '17)
 - Active Posterior Estimation

(Kandasamy et al. '15)



- Active Learning
 - Active Quadrature (Osborne et al. 2012)
- Blackbox Optimisation > Active Level Set Estimation (Gotovos et al. '13) Active Search (Ma et al. '17)
 - Active Posterior Estimation

(Kandasamy et al. '15)

Issues:

- ▶ New goal/setting ⇒ New algorithm?
- Algorithms tend to depend on the model and vice versa.

1. System:

- An *unknown* parameter θ completely specifies the system.
- A prior $\mathbb{P}(\theta)$ and a likelihood $\mathbb{P}(Y|X,\theta)$.

1. System:

- An *unknown* parameter θ completely specifies the system.
- A prior $\mathbb{P}(\theta)$ and a likelihood $\mathbb{P}(Y|X,\theta)$.

2. Goal:

Collect data D_n = {(x_t, y_{xt})}ⁿ_{t=1} to maximise a user specified reward function λ(θ, D_n).

Algorithm: Myopic Posterior Sampling (MPS) Inspired by Posterior (Thompson) Sampling (Thompson 1933).

At each time step, myopically choose action by assuming that a posterior sample $\theta' \sim \mathbb{P}(\theta|\text{past-experiments})$ is the true parameter.

Algorithm: Myopic Posterior Sampling (MPS) Inspired by Posterior (Thompson) Sampling (Thompson 1933).

At each time step, myopically choose action by assuming that a posterior sample $\theta' \sim \mathbb{P}(\theta | \text{past-experiments})$ is the true parameter.

Only requires that we can sample from the posterior.

- Many probabilistic programming tools available today.

Theorem (Informal): Under certain conditions, MPS is competitive with a *globally* optimal oracle that *knows* θ .

Proof ideas from adaptive submodularity and bandits.

Theory

Theorem (Informal): Under certain conditions, MPS is competitive with a *globally* optimal oracle that *knows* θ .

Proof ideas from adaptive submodularity and bandits.

Prior work: With adaptive submodularity, myopic *planning* algorithms are good when the reward is known a priori.

Theory

Theorem (Informal): Under certain conditions, MPS is competitive with a *globally* optimal oracle that *knows* θ .

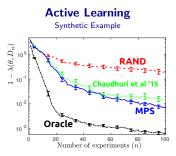
Proof ideas from adaptive submodularity and bandits.

Prior work: With adaptive submodularity, myopic *planning* algorithms are good when the reward is known a priori.

This work:

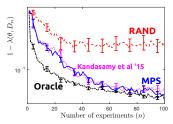
- $\lambda(\theta, D_n)$: reward not known a priori.
- A myopic *learning+planning* algorithm is good in adaptive submodular environments.

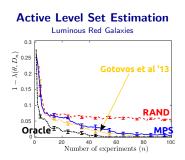
Experiments



Active Posterior Estimation

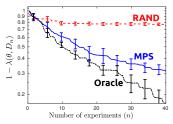
Type Ia Supernova





Application Specific Goal

Electrolyte Design



Carnegie Mellon University Autan Research

Code: github.com/kirthevasank/mps

Poster: #262