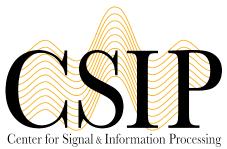
Active Embedding Search via Noisy Paired Comparisons

Gregory H. Canal Georgia Institute of Technology

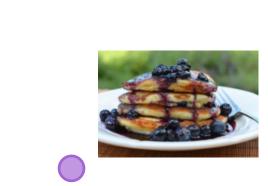
In collaboration with:

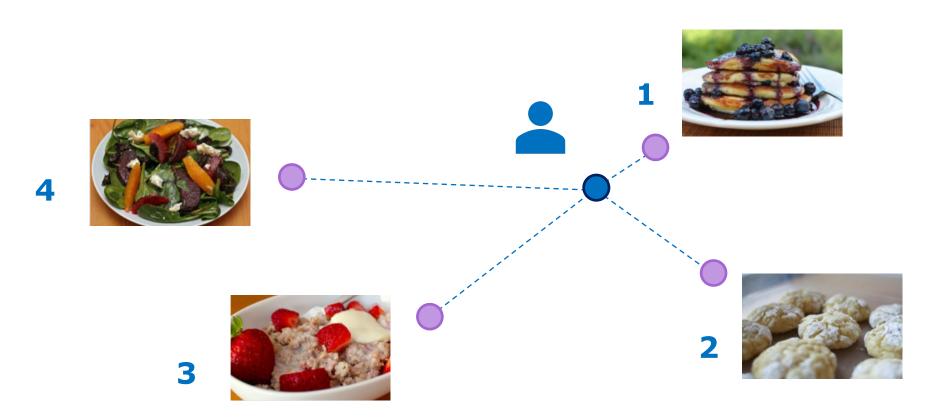
Andrew K. Massimino, Mark A. Davenport, Christopher J. Rozell



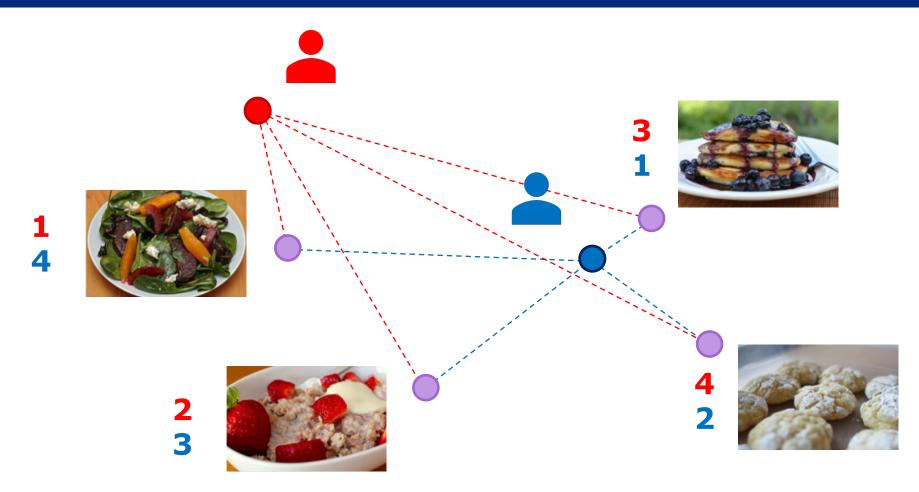
SIPLAb

Sensory Information Processing Lab

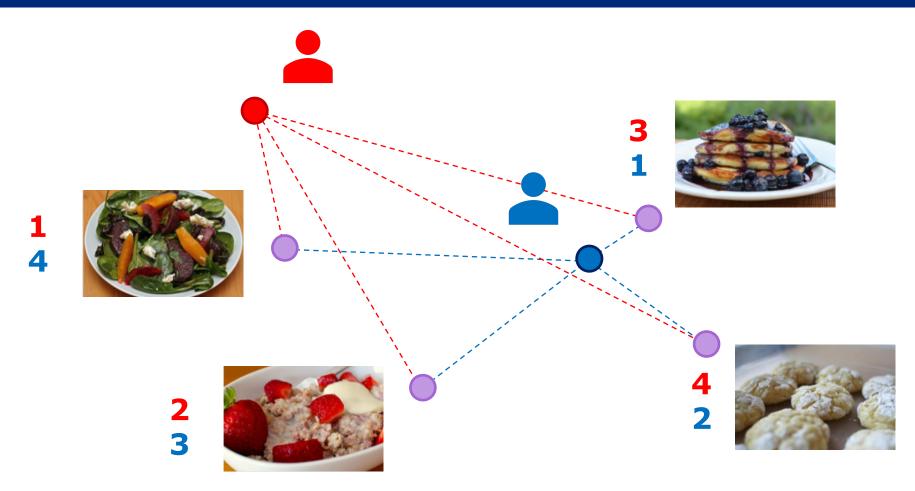




• Item preferences ranked by distance to user



• Item preferences ranked by distance to user

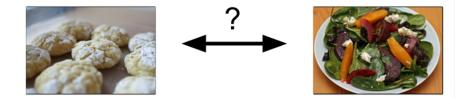


- Item preferences ranked by distance to user
- Continuous user point: hypothetical *ideal* item (not necessarily in dataset)

Method of paired comparisons

Learn preferences via method of paired comparisons (David, 1963)

"Which of these two foods do you prefer to eat?"



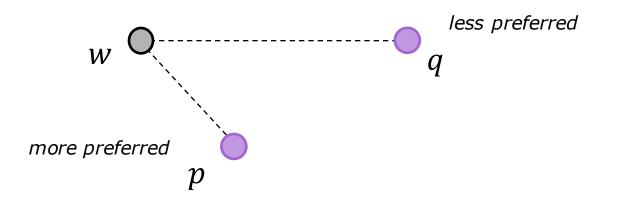
- Direct comparisons may be explicitly solicited
- Comparisons are *implicitly* solicited everywhere

- In practice, responses are noisy, inconsistent

Ideal point model

- *Pairwise search*: estimate user vector $w \in \mathbb{R}^d$ based on paired comparisons between items
- *Ideal point model*: continuous point *w* encodes ideal item that is preferred over all other items (Coombs, 1950)

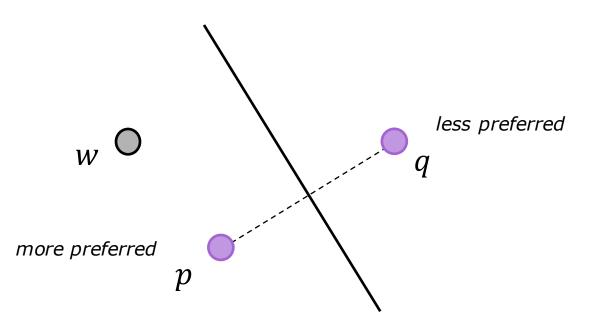
Paired comparison (p,q): user at w prefers item p over item q if and only if ||w - p|| < ||w - q||



Ideal point model

- *Pairwise search*: estimate user vector $w \in \mathbb{R}^d$ based on paired comparisons between items
- *Ideal point model*: continuous point *w* encodes ideal item that is preferred over all other items (Coombs, 1950)

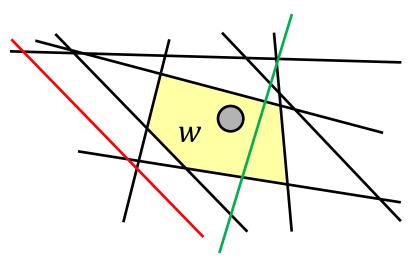
Paired comparison (p,q): user at w prefers item p over item qif and only if ||w - p|| < ||w - q||



Prior work

How can paired comparisons (hyperplanes) be selected?

- Query as few pairs as possible
- Linear models (e.g., learning to rank, latent factors) unsuitable for nonlinear ideal point model (Wu et al., 2017; Qian et al., 2015)
- Feasible region tracking
 - Query pairs adaptively
 - Add slack variables to feasible region (Massimino & Davenport, 2018)
 - Repeat comparisons, take majority vote (Jamieson & Nowak, 2011)
 - Previous methods *do not* incorporate noise into pair selection

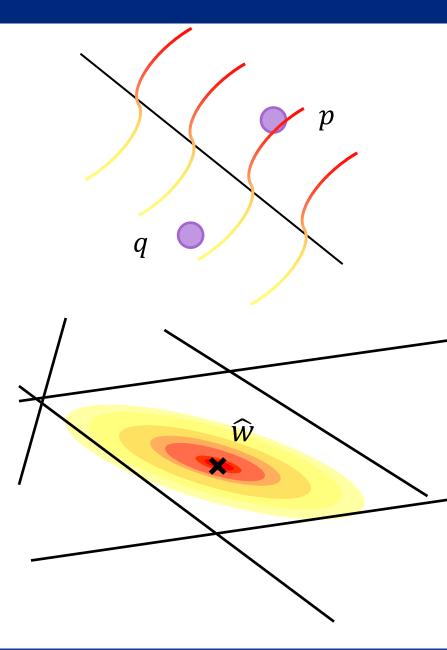


Modeling response noise

- $a_{pq} \in \mathbb{R}^d$, $b_{pq} \in \mathbb{R}$: weights, threshold of hyperplane bisecting p, q
- Model noise with logistic response probability

$$P(p \prec q) = \frac{1}{1 + e^{-k_{pq}(a_{pq}^T w - b_{pq})}}$$

- *k_{pq}*: *noise constant*,
 represents signal-to-noise
 ratio
- User estimated as posterior mean (MMSE estimator)



Our contribution

- Directly incorporate noise model into adaptive selection of pairs
- Strategy 1: InfoGain
- Strategy 2: EPMV
 - analytically tractable
- Strategy 3: MCMV
 - computationally tractable

Strategy 1: Maximize information gain (InfoGain)

- Y_i : binary response to ith paired comparison
- $h_i(W)$: differential entropy of posterior
- *InfoGain*: choose queries that maximize expected decrease in posterior entropy i.e. *information gain*:

 $I(W; Y_i | y^{i-1}) = h_{i-1}(W) - E_{Y_i}[h_i(W) | y^{i-1}]$

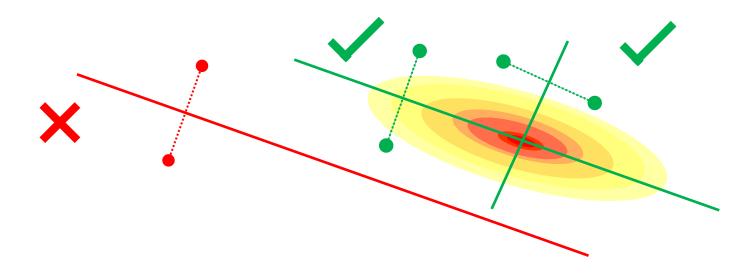
- No closed-form expression, estimate with samples from posterior
 - Computationally *expensive*: scales in product of # of samples and # candidate pairs
- Difficult to analyze convergence

Information gain intuition

• Symmetry of mutual information:

$$I(W; Y_i | y^{i-1}) = H(Y_i | y^{i-1}) - H(Y_i | W, y^{i-1})$$

- First term promotes selection of comparisons where outcome is non-obvious, given previous responses
 - Maximized when comparison response is equiprobable,
 i.e. probability of picking each pair item is 1/2

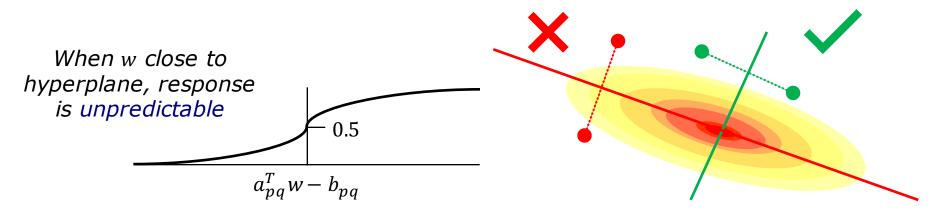


Information gain intuition

• Symmetry of mutual information:

$$I(W; Y_i | y^{i-1}) = H(Y_i | y^{i-1}) - H(Y_i | W, y^{i-1})$$

• Second term promotes selection of comparisons that would have predictable outcomes if *w* were known



- Choose query where w is *far* from hyperplane in expectation
 - i.e. posterior variance orthogonal to hyperplane (projected variance) is large

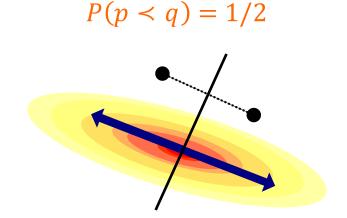
Strategy 2: Equiprobable, max-variance (EPMV)

$$I(W; Y_i | y^{i-1}) = H(Y_i | y^{i-1}) - H(Y_i | W, y^{i-1})$$

• *Equiprobable*: response is equally likely to be either item

- Determines hyperplane threshold

- *Max-variance:* comparison cuts in direction of maximum projected variance
 - Determines hyperplane weights



Proposition

For equiprobable comparison with hyperplane weights a_{pq} ,

$$I(W; Y_i | y^{i-1}) \ge L_1\left(a_{pq}^T \Sigma_{W|Y^{i-1}} a_{pq}\right)$$

where L_1 is a monotonically increasing function.

EPMV approximates InfoGain

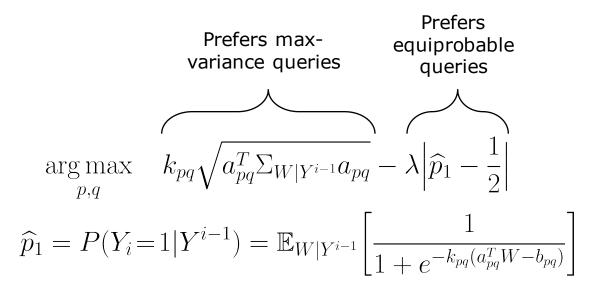
Theorem

For the EPMV query scheme with each selected query satisfying $k_{pq} ||a_{pq}|| \ge k_{min} > 0$ and stopping threshold $\varepsilon > 0$, consider the stopping time $T_{\varepsilon} = \min\left\{i: \left|\Sigma_{W|y^i}\right|^{\frac{1}{d}} < \varepsilon\right\}$. We have $E[T_{\varepsilon}] = 0(d\log\frac{1}{\varepsilon} + \frac{1}{\varepsilon k_{min}^2}d^2\log\frac{1}{\varepsilon}).$ Furthermore, for any query scheme $E[T_{\varepsilon}] = \Omega(d\log\frac{1}{\varepsilon}).$

> For large noise constants ($k_{min} \gg 0$), EPMV reduces the posterior volume at a nearly-optimal rate.

EPMV in practice

- Often, one selects pair from pool, rather than querying arbitrary hyperplanes
- Select pair that maximizes approximate EPMV utility function, for $\lambda > 0$



Computationally *expensive* – same utility evaluation cost as InfoGain

Strategy 3: Mean-cut, max-variance (MCMV)

$$I(W; Y_i | y^{i-1}) = H(Y_i | y^{i-1}) - H(Y_i | W, y^{i-1})$$

- Computational bottleneck in EPMV is evaluating equiprobable property
 - Approximate equiprobable property with *mean-cut* property i.e. hyperplane passes through posterior mean

$$a_{pq}^{T}E[W|Y^{i-1}] - b_{pq} = 0$$

Proposition

For mean-cut comparisons with $a_{pq}^T \Sigma_{W|Y^{i-1}} a_{pq} \gg 0$,

 $|p(Y_i|y^{i-1}) - 1/2| \leq 0.14$

MCMV approximates EPMV

Proposition

For mean-cut comparison with hyperplane weights a_{pq} ,

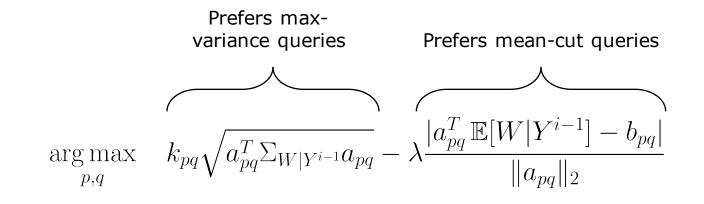
$$I(W; Y_i | y^{i-1}) \ge L_2\left(a_{pq}^T \Sigma_{W|Y^{i-1}} a_{pq}\right)$$

where L_2 is a monotonically increasing function.

MCMV approximates InfoGain

MCMV in practice

• Select pair that maximizes utility function, for $\lambda > 0$



- Computational cost is *much* cheaper than InfoGain and EPMV
 - Scales with *sum* of # number of posterior samples and # candidate pairs, rather than *product*

Method	Advantages	Limitations
InfoGain	Directly minimizes posterior volume	Computationally expensive
		Difficult to analyze
EPMV	Convergence guarantee	Computationally expensive
MCMV	Computationally cheap	No convergence guarantee (future work)

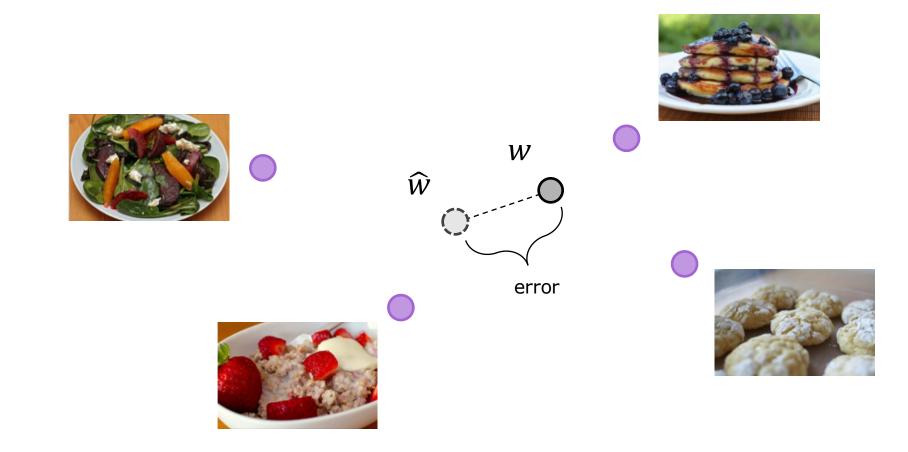
Simulated results

- Item embedding constructed from Yummly Food-10k dataset (Wilber et al., 2015; 2014)
 - 10,000 food items
 - \sim 1 million human comparisons between items

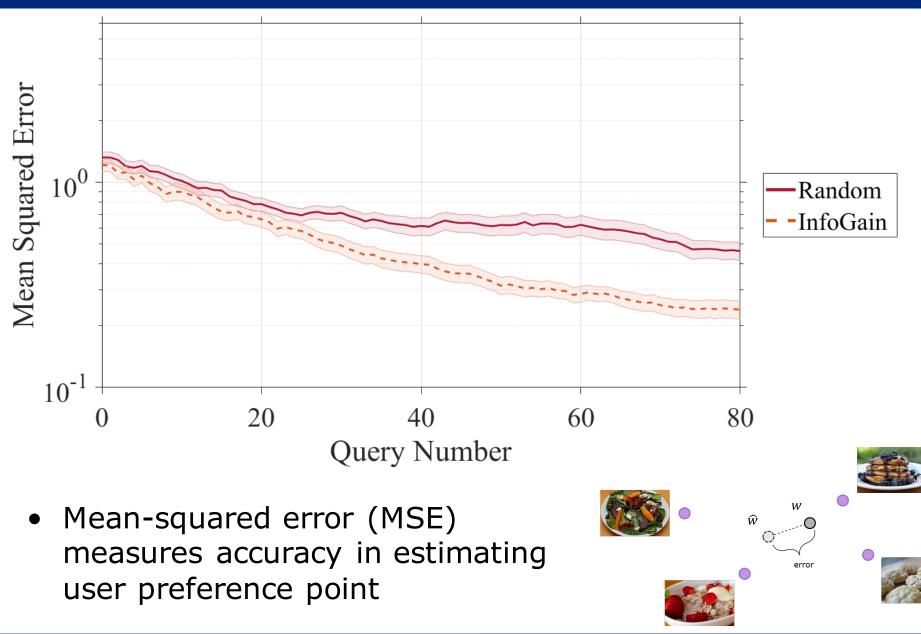
- Simulated pairwise search
 - Noise constant k_{pq} estimated from training comparisons
 - User preference point drawn uniformly from hypercube, d = 4

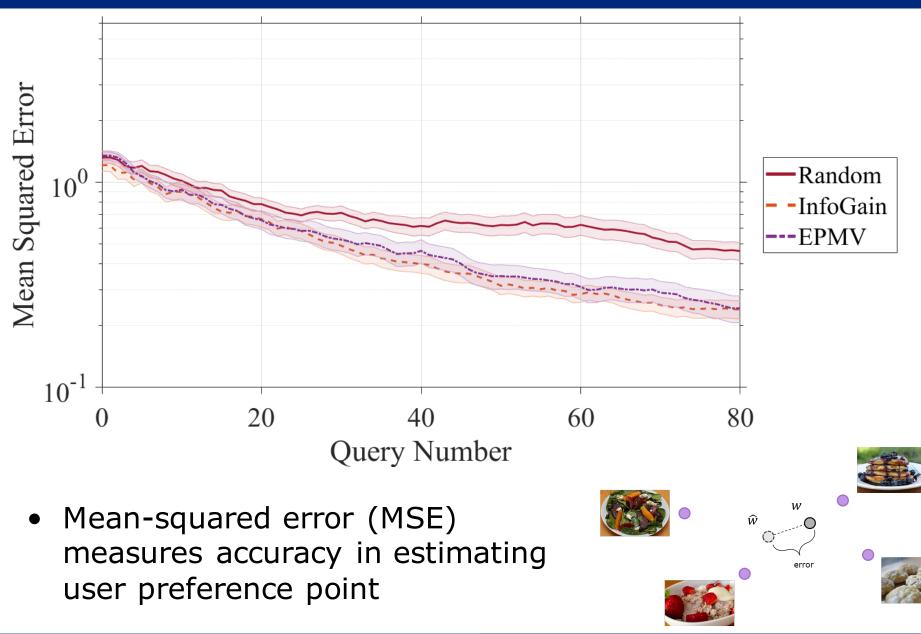
Simulated results – baseline methods

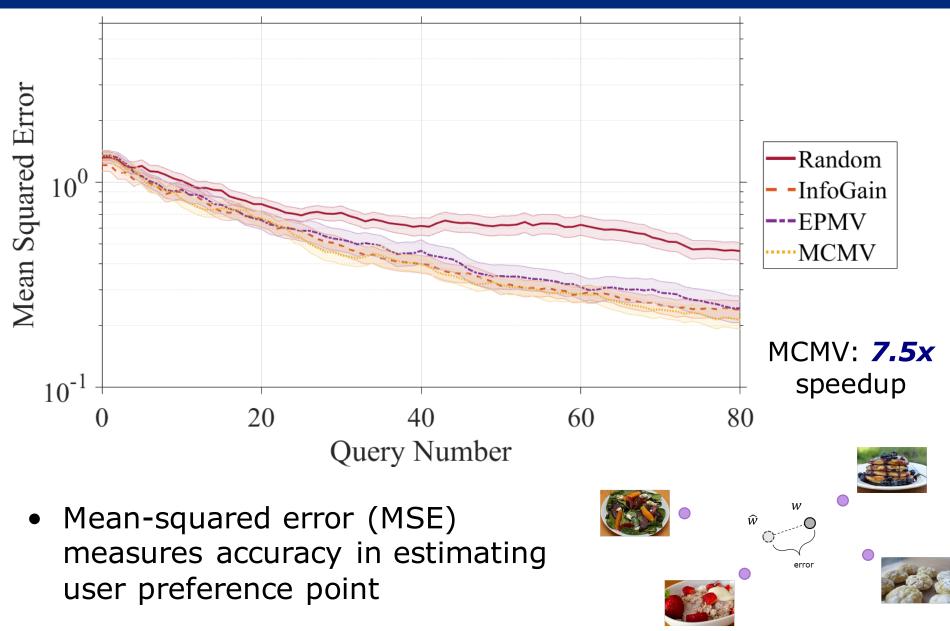
- Random
 - pairs selected uniformly at random
 - user estimated as posterior mean
- *GaussCloud* (Massimino & Davenport, 2018)
 - pairs chosen to approximate Gaussian point cloud around estimate, shrinks over multiple stages
 - user estimated by approximately solving non-convex program
- ActRank (Jamieson & Nowak, 2011)
 - pairs selected that intersect feasible region of preference points
 - query repeated multiple times, majority vote taken
 - user estimated as Chebyshev center*

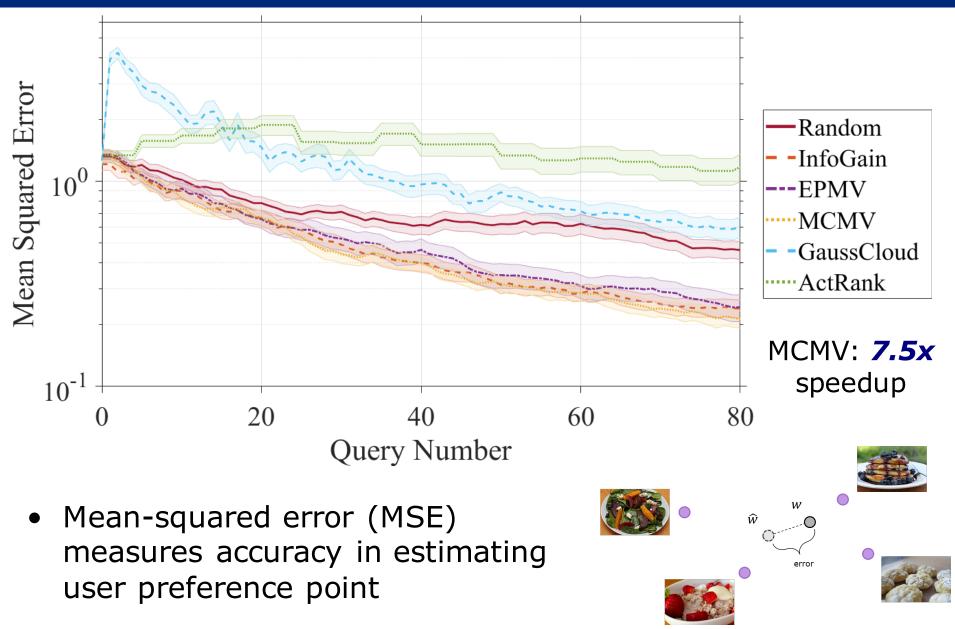


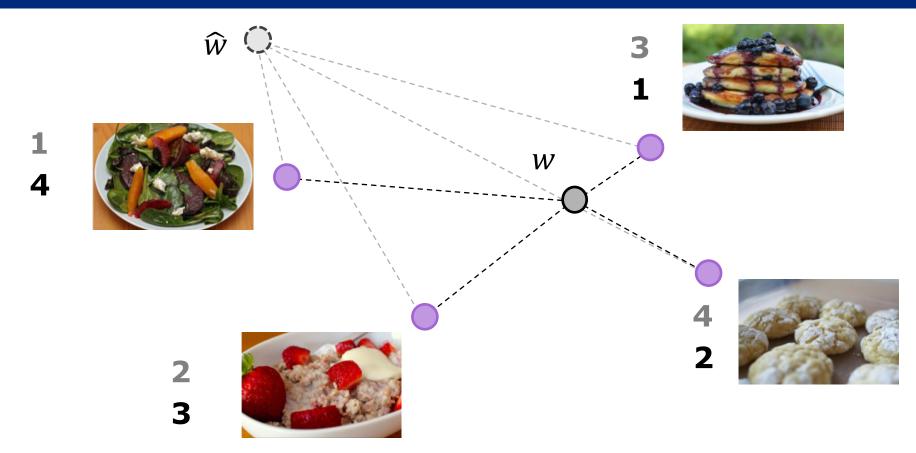
 Mean-squared error (MSE) measures accuracy in estimating user preference point



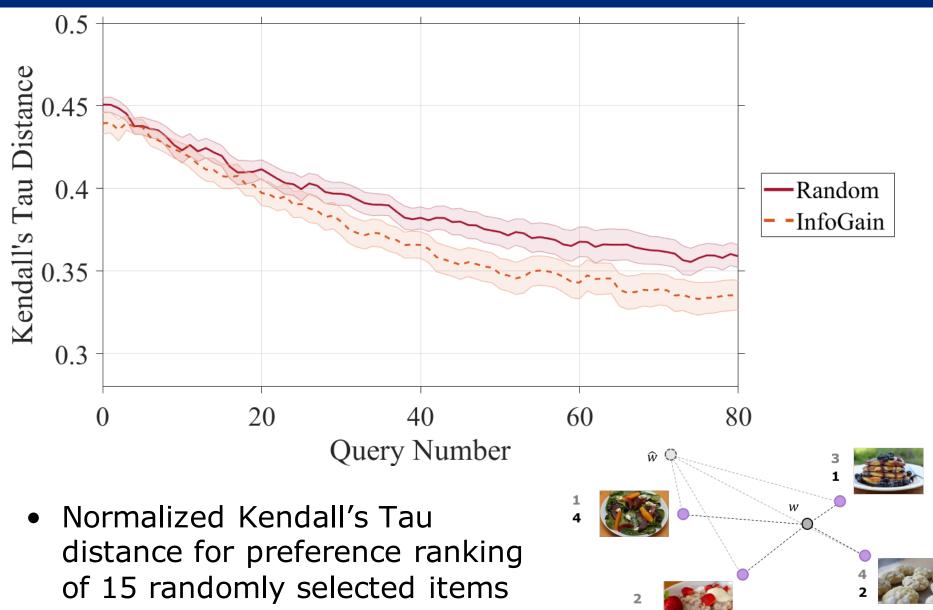




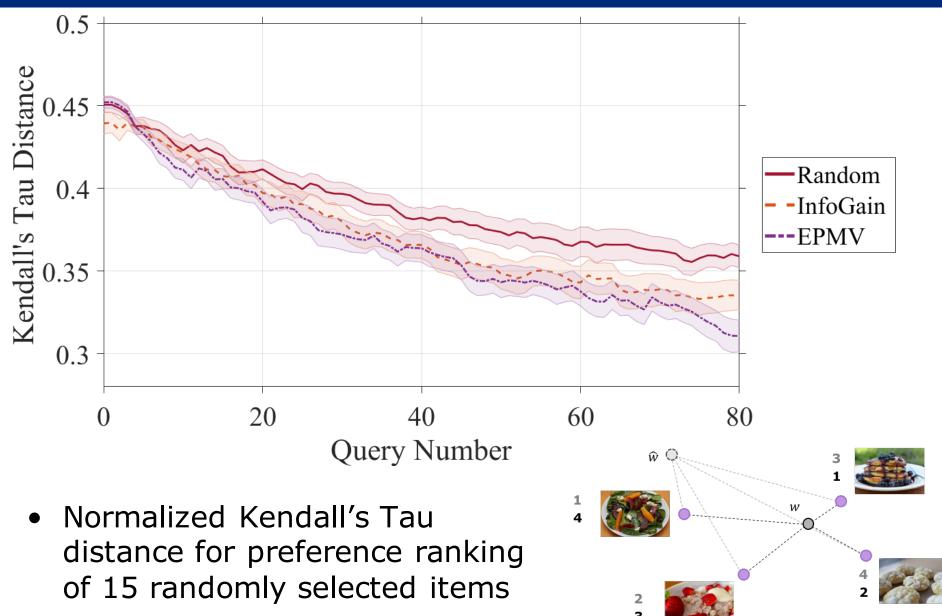


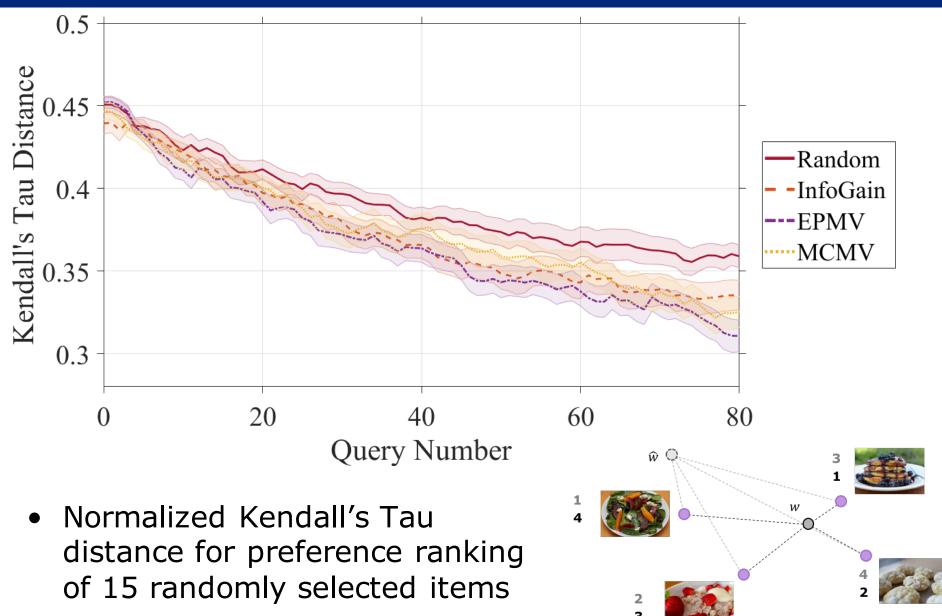


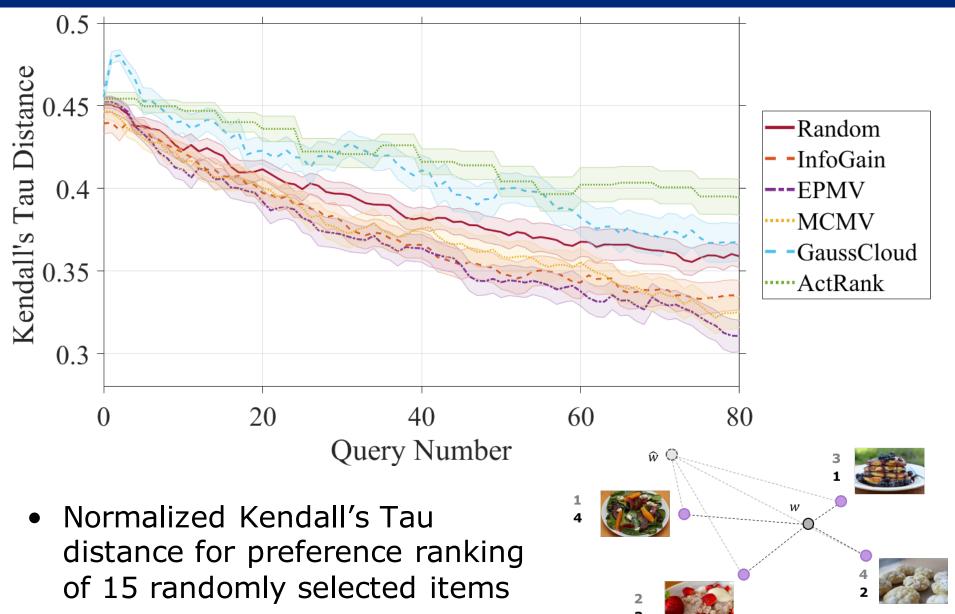
 Normalized Kendall's Tau distance for preference ranking of 15 randomly selected items



3







Takeaways

- First effort to directly model noise in active pairwise preference learning for ideal point model
 - InfoGain
 - Equiprobable max-variance (EPMV)
 - Mean-cut max-variance (MCMV)
- Preliminary support for robustness to noise mismatch
- Potential applications
 - Advertising, online shopping
 - Parameter settings
 - Product customization, recipe generation
 - Database search (medical records, faces)

Sensory Information Processing Lab

Code available at: https://github.com/siplab-gt/pairsearch

http://siplab.gatech.edu

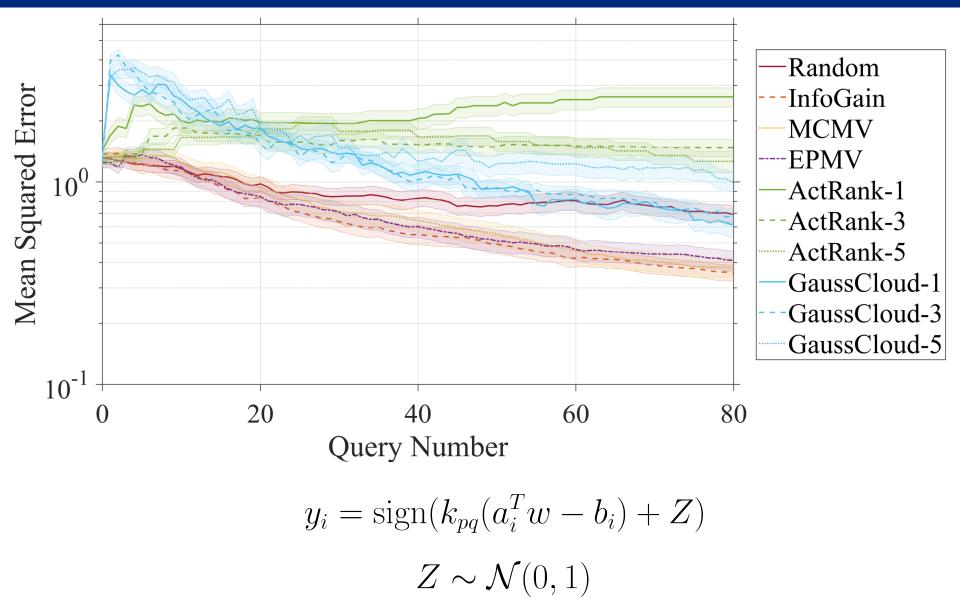
gregory.canal@gatech.edu

@GregHCanal

POSTER #260

TODAY, 6:30 – 9:00 PM, Pacific Ballroom

Simulated mismatched noise - MSE



Simulated mismatched noise – Kendall's Tau

