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Motivation

The DAG learning problem is a vital part in causal inference:

Let A ∈ Rm×m be the unknown weighted adjacency matrix of a DAG with
m nodes.

Given n identically distributed (i.i.d.) samples X k ∈ Rm×d , from a
distribution corresponding to A.

Our focus is to recovery the directed acyclic graph (DAG) A from
X = {X 1, · · · ,X n}.

However, DAG learning is proven to be NP-hard.
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Conventional DAG learning methods:

Perform score-and-search for discrete variables: with a constraint stating
that the graph must be acyclic.

Make a parametric (e.g. Gaussian) assumption for continuous variables:
may result in model misspecification.

An equivalent acyclicity constraint was proposed by Zheng et al1 (NOTEARS)
for linear Structural Equation Model (SEM), by imposing a continuous penalty
function

h(A) = tr(exp(A ◦ A))−m.

We followed the framework of [1] to formulate the problem as a continuous
optimization, with the following major contributions:

1 We developed a deep generative model (VAE) parameterized by a
novel graph neural network architecture (DAG-GNN).

2 We proposed an alternative constraint h(A).

3 The model is capable to capture complex distributions of data and to
sample from them, and naturally handles various data types.

1
Zheng, X., Aragam, B., Ravikumar, P. K., & Xing, E. P. (2018). DAGs with NO TEARS: Continuous Optimization for Structure

Learning. In Advances in Neural Information Processing Systems (pp. 9472-9483).
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Model Learning with Variational Autoencoder (VAE)

Our method learns the weighted adjacency matrix A of a DAG by using a deep
generative model through maximizing the evidence lower bound (ELBO)

LELBO =
1

n

n∑
k=1

LkELBO,

LkELBO ≡ −DKL

(
q(Z |X k ) || p(Z)

)
+ Eq(Z |X k )

[
log p(X k |Z)

]
.

The ELBO lends itself to a VAE: given X k , the encoder (inference model)
encodes it into a latent variable Z with density q(Z |X k); and the decoder
(generative model) reconstructs X k from Z with density p(X k |Z).

Inspired by the linear SEM model

X = ATX + Z , or, equivalently, X = (I − AT )−1Z ,

we propose a new graph neural network architecture for the decoder

X̂ = f2((I − AT )−1f1(Z)),

and the corresponding encoder

Z = f4((I − AT )f3(X )).
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Graph Neural Network (GNN) Architecture

For the inference model (encoder) Z = f4((I − AT )f3(X )): we let f3 be a
multilayer perceptron (MLP) and f4 be the identity mapping. Then the
variational posterior q(Z |X ) is a factored Gaussian with mean MZ and standard
deviation SZ :

[MZ | log SZ ] = (I − AT )MLP(X ,W 1,W 2) := (I − AT )ReLU(XW 1)W 2.

For the generative model (decoder) X̂ = f2((I − AT )−1f1(Z)): we let f1 be the
identity mapping and f2 be an MLP. Then the likelihood p(X |Z) is a factored
Gaussian with mean MX and standard deviation SX :

[MX | log SX ] = MLP((I − AT )−1Z ,W 3,W 4) := ReLU((I − AT )−1ZW 3)W 4.
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A Robust Acyclicity Constraint

To further guarantee that the learnt A is a acyclic, we propose an (alternative)
equality constraint when maximizing the ELBO.

Theorem: Let A ∈ Rm×m be the (possibly negatively) weighted adjacency
matrix of a directed graph. For any α > 0, the graph is acyclic if and only if

h(A) = tr[(I + αA ◦ A)m]−m = 0.

Here α may be treated as a hyperparameter.

When the eigenvalues of A ◦ A have a large magnitude, by taking sufficiently
small constant α, (I + αA ◦ A)m is more stable than exp(A ◦ A):

Theorem: Let α = c/m > 0 for some c. Then for any complex λ, we have
(1 + α|λ|)m ≤ ec|λ|.

In practice, α depends on m and an estimation of the largest eigenvalue of
A ◦ A in magnitude.
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Nonlinear and vector value datasets

Nonlinear synthetic data: generated by X = AT cos(X + 1) + Z :

Vector value data X k ∈ Rm×d , d > 1: generated by x̃ = AT x̃ + z̃ ,
xk = uk x̃ + v k + zk and X = [x1|x2| · · · |xd ]:
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Discrete value datasets

The proposed model naturally handles discrete variables. Assuming that each
variable has a finite support of cardinality d , let p(X |Z) be a factored
categorical distribution with probability matrix PX , one embedding layer is
added to the encoder and the decoder is modified as:

PX = softmax(MLP((I − AT )−1Z ,W 3,W 4)).

The solver is compared with the state-of-the-art exact DAG solver GOPNILP2

on 3 benchmark datasets:

Dataset m Groundtruth GOPNILP DAG-GNN
Child 20 -1.27e+4 -1.27e+4 -1.38e+4
Alarm 37 -1.07e+4 -1.12e+4 -1.28e+4
Pigs 441 -3.48e+5 -3.50e+5 -3.69e+5

Table : BIC scores on benchmark datasets of discrete variables.

2
Cussens, J., Haws, D., & Studeny, M. (2017). Polyhedral aspects of score equivalence in Bayesian network structure learning.

Mathematical Programming, 164(1-2), 285-324.
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Applied to a bioinformatics dataset3 for the discovery of a protein signaling
network:

Method SHD # Predicted edges
FGS 22 17

NOTEARS 22 16
DAG-GNN 19 18

Applied to a knowledge base (KB) schema dataset4. The nodes of which are
relations and the edges indicate whether one relation suggests another.

film/ProducedBy ⇒ film/Country
film/ProductionCompanies ⇒ film/Country

person/Nationality ⇒ person/Languages
person/PlaceOfBirth ⇒ person/Languages

person/PlaceOfBirth ⇒ person/Nationality
person/PlaceLivedLocation ⇒ person/Nationality

3
Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling networks derived from

multiparameter single-cell data. Science, 308(5721), 523-529.
4

Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., & Gamon, M. (2015). Representing text for joint embedding of text
and knowledge bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1499-1509).
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Thank you for your attention.

The code is available at https://github.com/fishmoon1234/DAG-GNN.

For further details and questions, please come to our poster session:
This evening 06:30 – 09:00 PM, Pacific Ballroom #215.
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