DAG-GNN: DAG Structure Learning with Graph Neural Networks

Yue Yu¹, Jie Chen^{2,3}, Tian Gao³, Mo Yu³

¹Department of Mathematics, Lehigh University, USA ²MIT-IBM Watson AI Lab, USA ³IBM Research, USA

> ICML 2019 June 13th, 2019

Motivation

The DAG learning problem is a vital part in causal inference:

- Let $A \in \mathbb{R}^{m \times m}$ be the unknown weighted adjacency matrix of a DAG with m nodes.
- Given n identically distributed (i.i.d.) samples X^k ∈ ℝ^{m×d}, from a distribution corresponding to A.
- Our focus is to recovery the directed acyclic graph (DAG) A from $X = \{X^1, \dots, X^n\}.$

However, DAG learning is proven to be NP-hard.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivation

Conventional DAG learning methods:

- Perform score-and-search for discrete variables: with a constraint stating that the graph must be acyclic.
- Make a parametric (e.g. Gaussian) assumption for continuous variables: may result in model misspecification.

An equivalent acyclicity constraint was proposed by Zheng et al¹ (NOTEARS) for linear Structural Equation Model (SEM), by imposing a continuous penalty function

$$h(A) = tr(exp(A \circ A)) - m.$$

We followed the framework of [1] to formulate the problem as a continuous optimization, with the following major contributions:

- We developed a deep generative model (VAE) parameterized by a novel graph neural network architecture (DAG-GNN).
- **2** We proposed an **alternative constraint** h(A).
- The model is capable to capture **complex distributions** of data and to sample from them, and **naturally handles various data types**.

¹Zheng, X., Aragam, B., Ravikumar, P. K., & Xing, E. P. (2018). DAGs with NO TEARS: Continuous Optimization for Structure Learning. In Advances in Neural Information Processing Systems (pp. 9472-9483).

Graph Neural Network (GNN) An Alternative DAG Constraint

Model Learning with Variational Autoencoder (VAE)

Our method learns the weighted adjacency matrix A of a DAG by using a deep generative model through maximizing the evidence lower bound (ELBO)

$$L_{\text{ELBO}} = \frac{1}{n} \sum_{k=1}^{n} L_{\text{ELBO}}^{k},$$
$$L_{\text{ELBO}}^{k} \equiv -D_{\text{KL}} \left(q(Z|X^{k}) || p(Z) \right) + E_{q(Z|X^{k})} \left[\log p(X^{k}|Z) \right].$$

The ELBO lends itself to a VAE: given X^k , the encoder (inference model) encodes it into a latent variable Z with density $q(Z|X^k)$; and the decoder (generative model) reconstructs X^k from Z with density $p(X^k|Z)$.

Inspired by the linear SEM model

$$X = A^T X + Z$$
, or, equivalently, $X = (I - A^T)^{-1} Z$,

we propose a new graph neural network architecture for the decoder

$$\hat{X} = f_2((I - A^T)^{-1}f_1(Z)),$$

and the corresponding encoder

$$Z = f_4((I - A^T)f_3(X)).$$

.

Graph Neural Network (GNN) An Alternative DAG Constraint

Graph Neural Network (GNN) Architecture

For the inference model (encoder) $Z = f_4((I - A^T)f_3(X))$: we let f_3 be a multilayer perceptron (MLP) and f_4 be the identity mapping. Then the variational posterior q(Z|X) is a factored Gaussian with mean M_Z and standard deviation S_Z :

 $[M_Z|\log S_Z] = (I - A^T) \mathsf{MLP}(X, W^1, W^2) := (I - A^T) \mathsf{ReLU}(XW^1) W^2.$

For the generative model (decoder) $\hat{X} = f_2((I - A^T)^{-1}f_1(Z))$: we let f_1 be the identity mapping and f_2 be an MLP. Then the likelihood p(X|Z) is a factored Gaussian with mean M_X and standard deviation S_X :

 $[M_X|\log S_X] = \mathsf{MLP}((I - A^T)^{-1}Z, W^3, W^4) := \mathsf{ReLU}((I - A^T)^{-1}ZW^3)W^4.$

DAG-GNN: DAG Structure Learning with Graph Neural Networks

A Robust Acyclicity Constraint

To further guarantee that the learnt A is a acyclic, we propose an (alternative) equality constraint when maximizing the ELBO.

Theorem: Let $A \in \mathbb{R}^{m \times m}$ be the (possibly negatively) weighted adjacency matrix of a directed graph. For any $\alpha > 0$, the graph is acyclic if and only if

$$h(A) = tr[(I + \alpha A \circ A)^m] - m = 0.$$

Here α may be treated as a hyperparameter.

When the eigenvalues of $A \circ A$ have a large magnitude, by taking sufficiently small constant α , $(I + \alpha A \circ A)^m$ is more stable than $\exp(A \circ A)$:

Theorem: Let $\alpha = c/m > 0$ for some *c*. Then for any complex λ , we have $(1 + \alpha |\lambda|)^m \le e^{c|\lambda|}$.

In practice, α depends on *m* and an estimation of the largest eigenvalue of $A \circ A$ in magnitude.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Synthetic Datasets Discrete Benchmark Datasets Applications on Real-World Datasets

Nonlinear and vector value datasets

• Nonlinear synthetic data: generated by $X = A^T \cos(X + 1) + Z$:

• Vector value data $X^k \in \mathbb{R}^{m \times d}$, d > 1: generated by $\tilde{x} = A^T \tilde{x} + \tilde{z}$, $x^k = u^k \tilde{x} + v^k + z^k$ and $X = [x^1 | x^2 | \cdots | x^d]$:

DAG-GNN: DAG Structure Learning with Graph Neural Networks

- 4 同 ト 4 ヨ ト 4 ヨ ト

Synthetic Datasets Discrete Benchmark Datasets Applications on Real-World Datasets

Discrete value datasets

The proposed model naturally handles **discrete variables**. Assuming that each variable has a finite support of cardinality d, let p(X|Z) be a factored categorical distribution with probability matrix P_X , one embedding layer is added to the encoder and the decoder is modified as:

$P_X = \operatorname{softmax}(\operatorname{MLP}((I - A^T)^{-1}Z, W^3, W^4)).$

The solver is compared with the state-of-the-art exact DAG solver $GOPNILP^2$ on 3 benchmark datasets:

Dataset	т	Groundtruth	GOPNILP	DAG-GNN
Child	20	-1.27e+4	-1.27e+4	-1.38e+4
Alarm	37	-1.07e+4	-1.12e+4	-1.28e+4
Pigs	441	-3.48e+5	-3.50e+5	-3.69e+5

Table : BIC scores on benchmark datasets of discrete variables.

 Background
 Synthetic Datasets

 Proposed Formulations
 Discrete Benchmark Datasets

 Experiments
 Applications on Real-World Datasets

Applied to a **bioinformatics dataset**³ for the discovery of a protein signaling network:

Method	SHD	# Predicted edges	
FGS	22	17	
NOTEARS	22	16	
DAG-GNN	19	18	

Applied to a **knowledge base (KB) schema dataset**⁴. The nodes of which are relations and the edges indicate whether one relation suggests another.

film/ProducedBy film/ProductionCompanies	$\Rightarrow \Rightarrow$	film/Country film/Country
person/Nationality person/PlaceOfBirth	$\Rightarrow \Rightarrow$	person/Languages person/Languages
person/PlaceOfBirth person/PlaceLivedLocation	$\Rightarrow \Rightarrow$	person/Nationality person/Nationality

³Sachs, K., Perez, O., Pe'er, D., Lauffenburger, D. A., & Nolan, G. P. (2005). Causal protein-signaling networks derived from multiparameter single-cell data. Science, 308(5721), 523-529.

⁴Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., & Gamon, M. (2015). Representing text for joint embedding of text and knowledge bases. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1499-1509).

Synthetic Datasets Discrete Benchmark Datasets Applications on Real-World Datasets

Thank you for your attention.

The code is available at https://github.com/fishmoon1234/DAG-GNN.

For further details and questions, please come to our poster session: This evening 06:30 – 09:00 PM, Pacific Ballroom #215.

Acknowledgement

Collaborators:

Jie Chen

Tian Gao

Mo Yu

• Funding support:

NSF CAREER award DMS1753031, Lehigh FRG program.