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Brain Functional Connectivity Analysis

Estimation is distorted by physiological noise [Van Dijk et al.,
2012, Goto et al., 2016].
The noise sources are observable e.g. motion, breathing
…
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Model Formulation: Goals

→ A general formulation of the effects caused by the noise.

→ Stronger theoretical guarantees compared tp methods
with hidden variables.
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Model Formulation

→ Z denotes the observed fMRI data, and random variable
G, the physiological noise.

→ Z | G = g follows a Gaussian graphical model [Yang et al.,
2015] with a parameter matrix, denoted by Ω(g):

P(Z = z;Ω(g) | G = g) ∝ exp


p∑

j=1

Ωjj(g)zj
p∑

j=1

p∑
j′>j

Ωjj′(g)zjzj′ −
1

2

p∑
j

z2j

 .

→ Parameter matrices are additive:

Ω(g) := Ω0 + R(g).
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Model Formulation: Ω(g)
Goals:

• Identifiable parameters
• A general formulation

Assumptions:
• R(g) = 0 for any g satisfying |g| ≤ g∗.
• R(g), and Ω(g) are smooth enough to be recovered
by kernel methods.

Existing assumptions:
• R(g) = 0 [Van Dijk et al., 2012, Power et al., 2014].
• E(R(g)) = 0 [Lee and Liu, 2015, Geng et al., 2018].
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Parameter Estimation
Log Pseudo Likelihood:

•We summarize the varying effects as Mij := x⊤ij Ωi·j,
where x⊤ij denotes the ith row vector of xj.
•

ℓPL

(
{zi,gi}i∈[n] ;R(·),Ω0

)
=

n∑
i=1

p∑
j=1

{
zij

(
x⊤ij Ω0·j +Mij

)
− 1

2
z2ij

− 1

2

(
x⊤ij Ω0·j +Mij

)2
}
.
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Parameter Estimation
• Pseudo-Profile Likelihood [Fan et al., 2005]
• Suppose that Assumptions are satisfied. Then, for any
ϵ > 0, with probability of at least 1− ϵ, there exists C4 > 0,
so that Ω̂0 shares the same structure with the underlying
true parameter Ω∗

0, if for some constant C5 > 0,

C5

√
logp
n

≥ λ ≥ 4

α
C4

√
logp
n

,

r := 4C2λ ≤ ∥Ω∗
0S∥∞ ,

and n ≥
(
64C5C2

2C3/α
)2 logp.
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Parameter Estimation

Sparsistency: The underlying structure can be recovered
with a high probability.

√
n Convergence: The smallest scale of the non-zero

component that the PPL method can distinguish from
zero converges to zero at a rate of

√
n.
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Overall Performance

→ LR-GGM
→ fMRI dataset with control

subjects and those with
Schizophrenia.

→ Diagnosis using the re-
covered structure by two
different methods. 0
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Thank you!
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