# Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations

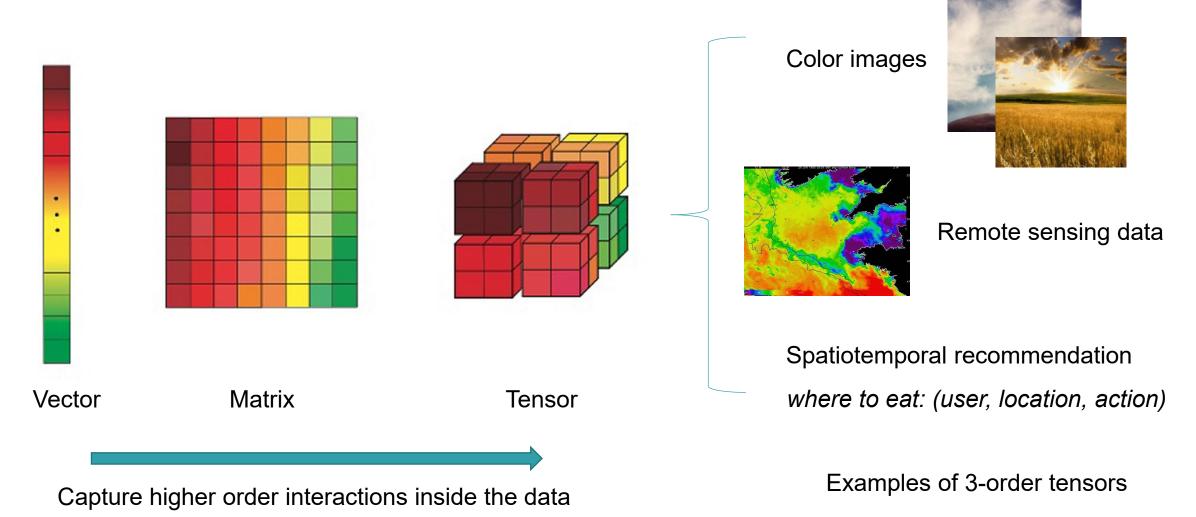
Presenter: Quanming Yao (4Paradigm)

Joint work with James T. Kwok (HKUST) and Bo Han (RIKEN)



第四范式(北京)技术有限公司 Copyright ©2018 4Paradigm All Righ<u>ts Reserved.</u>

# What is Tensor?



# Why needs Tensor Completion?

Color images





Remote sensing data

Spatiotemporal recommendation where to eat: (user, location, action)





Missing super-pixel / bands



Predict unknown triplet

Tensor completion: predict missing entries in the tensor

On 2-order tensor: reduce to matrix completion <sup>3</sup>

# How? - Overlapped nuclear norm

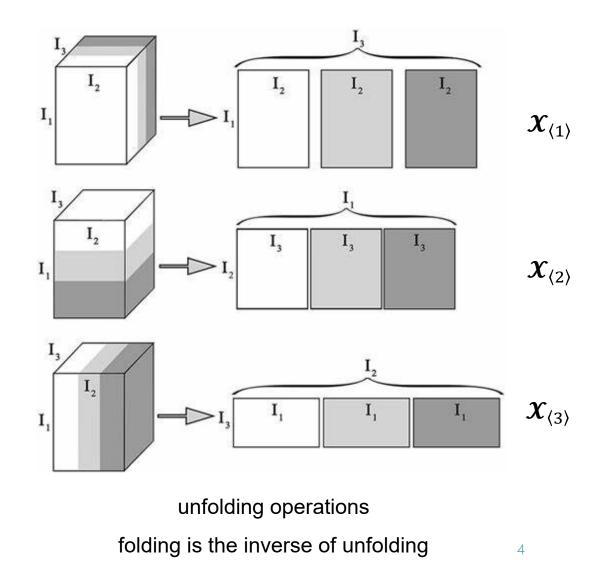
Nuclear norm ||X||<sub>\*</sub> [Candes & Recht, 2009]

- Summation of all singular values of a matrix
- convex envelope of the matrix rank function

Tensor: overlapped nuclear norm [Tomioka et al., 2010]

**Definition 1.** For a *M*-order tensor  $\mathfrak{X}$ , the overlapped nuclear norm is  $\|\mathfrak{X}\|_{overlap} = \sum_{m=1}^{M} \lambda_m \|\mathfrak{X}_{\langle m \rangle}\|_*$ , where  $\{\lambda_m \ge 0\}$  are hyperparameters.

- $X_{(m)}$  unfold tensor along with *m*th mode
- encourage all unfolded matrix to be low-rank



### Tensor Completion with Overlapped Nuclear Norm [Tomioka et al., 2010]

- Redundancy and correlations → low-rank approach is a power method in tensor completion
- Overlapped nuclear norm is a sound approach with statistical and convergence guarantee (compared with other tensor low-rank approaches [Tomioka et al., 2011; Liu et al., 2013; Guo et al., 2017])

observed entries

# Proposed NORT: <u>Nonconvex</u> regularized tensor completion

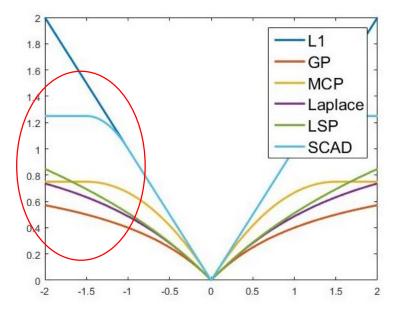
Our contributions, propose NORT algorithm

- 1. Improve the performance of overlapped nuclear norm
  - Extend nonconvex regularization with overlapped nuclear norm
- 2. Speedup optimization with structure aware proximal iterations
  - Cheap iteration: propose a special way to do matrix multiplication without tensor folding/unfolding
  - Fast convergence: enhance proximal average with adaptive momentum

#### Improve Performance: nonconvex regularization

Nonconvex regularization

Objective: 
$$\min_{\mathbf{X}} F(\mathbf{X}) \equiv \frac{1}{2} \left\| P_{\Omega}(\mathbf{X} - \mathbf{O}) \right\|_{F}^{2} + \sum_{d=1}^{D} \frac{\lambda_{d}}{D} \phi(\mathbf{X}_{\langle d \rangle}). \quad \text{where} \quad \phi(\mathbf{X}) = \sum_{i=1}^{n} \kappa(\sigma_{i}(\mathbf{X})),$$



Less penalize large singular values, which are

#### more informative

Common examples of  $\kappa(\sigma_i(\mathbf{X}))$ . Here,  $\theta$  is a constant. For capped- $\ell_1$ , LSP and MCP,  $\theta > 0$ ; for SCAD,  $\theta > 2$ ; and for TNN,  $\theta$  is a positive integer.

|                  | $\kappa(\sigma_i(\mathbf{X}))$                                                                                                                                                                                                                                     |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| nuclear norm     | $\sigma_i(\mathbf{X})$                                                                                                                                                                                                                                             |  |  |  |  |
| capped- $\ell_1$ | $\min(\sigma_i(\mathbf{X}), \theta)$                                                                                                                                                                                                                               |  |  |  |  |
| LSP              | $\log(\sigma_i(\mathbf{X})/\theta + 1)$                                                                                                                                                                                                                            |  |  |  |  |
| TNN [27]         | $\begin{cases} \sigma_i(\mathbf{X}) & \text{if } i > \theta \\ 0 & \text{otherwise} \end{cases}$                                                                                                                                                                   |  |  |  |  |
| SCAD             | $\begin{cases} \sigma_i(\mathbf{X}) & \text{if } \sigma_i(\mathbf{X}) \leq 1\\ \frac{2\theta\sigma_i(\mathbf{X}) - \sigma_i(\mathbf{X})^2 - 1}{2(\theta - 1)} & \text{if } 1 < \sigma_i(\mathbf{X}) \leq \theta\\ (\theta + 1)^2/2 & \text{otherwise} \end{cases}$ |  |  |  |  |
| МСР              | $\begin{cases} \sigma_i(\mathbf{X}) - \alpha^2/2\theta & \text{if } \sigma_i(\mathbf{X}) \le \theta \\ \theta^2/2 & \text{otherwise} \end{cases}$                                                                                                                  |  |  |  |  |

Copyright ©2018 4Paradigm All Rights Reserved.

# Speedup optimization: Structure-aware proximal iterations

Proximal average algorithm [Bauschke et al., 2008; Yu, 2013]

$$\begin{split} \mathbf{X}_{t} &= \frac{1}{K} \sum_{i=1}^{K} \mathbf{\mathcal{Y}}_{t}^{i}, & \underbrace{\text{maintain low-rank factorization}}_{\mathbf{X}_{t}} &= \frac{1}{D} \sum_{i=1}^{D} \left( \mathbf{U}_{t}^{i} (\mathbf{V}_{t}^{i})^{\top} \right)^{\langle i \rangle} \\ \mathbf{Z}_{t} &= \mathbf{X}_{t} - \frac{1}{\tau} \nabla f(\mathbf{X}_{t}), & \underbrace{\text{sparse plus low-rank structure}}_{\mathbf{Y}_{t+1}^{i} = \text{ prox}_{\frac{\lambda_{i}}{\tau}g_{i}}(\mathbf{Z}_{t}), & i = 1, \dots, K. \\ & \text{proximal step with nonconvex}_{\text{regularization}} & \underbrace{\text{utilize sparse plus low-rank structure to efficient}}_{\mathbf{U}_{t}^{i}(\mathbf{V}_{t}^{i})^{\top} \mathbf{D}_{t}^{i} = \frac{1}{D} \sum_{i=1}^{D} (\mathbf{U}_{t}^{i}(\mathbf{V}_{t}^{i})^{\top})^{\langle i \rangle} - \frac{1}{\tau} P_{\Omega} (\mathbf{X}_{t} - \mathbf{O}). \\ & \mathbf{U}_{t+1}^{i} &= \left[ \operatorname{prox}_{\frac{\lambda_{i}}{\tau}\phi}([\mathbf{Z}_{t}]_{\langle i \rangle}) \right]^{\langle i \rangle} & \underbrace{\text{matrix multiplications}}_{i} & \underbrace{\mathbf{X}_{t} = \frac{1}{D} \sum_{i=1}^{D} (\mathbf{U}_{t}^{i}(\mathbf{V}_{t}^{i})^{\top})^{\langle i \rangle} - \frac{1}{\tau} P_{\Omega} (\mathbf{X}_{t} - \mathbf{O}). \\ & \underbrace{\mathbf{U}_{t+1}^{i} = \left[ \operatorname{prox}_{\frac{\lambda_{i}}{\tau}\phi}([\mathbf{Z}_{t}]_{\langle i \rangle}) \right]^{\langle i \rangle} & \underbrace{\text{matrix multiplications}}_{i} & \underbrace{\mathbf{U}_{t}^{i}(\mathbf{V}_{t}^{i})^{\top} \mathbf{D}_{t} + \frac{1}{D} \sum_{j \neq i} [(\mathbf{U}_{t}^{j}(\mathbf{V}_{t}^{j})^{\top})^{\langle j \rangle}]_{\langle i \rangle} \mathbf{D} \\ & -\frac{1}{\tau} [P_{\Omega} (\mathbf{X}_{t} - \mathbf{O})]_{\langle i \rangle} \mathbf{D}, \\ & \underbrace{\mathbf{U}_{t}^{i}(\mathbf{U}_{t}^{i} - \mathbf{O})_{i}]_{\langle i \rangle} \mathbf{D}_{t} + \frac{1}{\tau} \sum_{j \neq i} [\mathbf{U}_{t}^{i}(\mathbf{U}_{t}^{i})^{\top} \mathbf{D}_{t}]_{i} \mathbf{D}_{t} \mathbf{D}$$

Needs folding/unfolding: full tensor computation

No folding/unfolding: fast and need less memory

|        | per-iteration time complexity                                                                                                     | space                                                                                               | convergence |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------|
| direct | $O(I_{\times}\sum_{i=1}^{D}I_{i})$                                                                                                | $O(I_{\times})$                                                                                     | slow        |
| NORT   | $O(\sum_{i=1}^{D} \sum_{j \neq i} (\frac{1}{I_i} + \frac{1}{I_j}) k_t^i k_{t+1}^i I_{\times} + \ \Omega\ _1 (k_t^i + k_{t+1}^i))$ | $O(\sum_{i=1}^{D} \sum_{j \neq i} (\frac{1}{I_i} + \frac{1}{I_j}) k_t^i I_{\times} + \ \Omega\ _1)$ | fast        |

Table 1. Comparison of the proposed NORT (Algorithm 1) and direct implementations of the PA algorithm.

Algorithm 1 NOnconvex Regularized Tensor (NORT). 1: initialize  $X_0 = X_1 = 0, \tau > \rho + DL$  and  $\gamma_1, p \in (0, 1)$ ; 2: for t = 1, ..., T do 3:  $\mathbf{X}_{t+1} = \frac{1}{D} \sum_{i=1}^{D} (\mathbf{U}_{t+1}^{i} (\mathbf{V}_{t+1}^{i})^{\top})^{\langle i \rangle};$ 4:  $\mathbf{X}_t = \mathbf{X}_t + \gamma_t (\mathbf{X}_t - \mathbf{X}_{t-1});$ 5: **if**  $F_{\tau}(\bar{\mathbf{X}}_t) \leq F_{\tau}(\mathbf{X}_t)$  then 6:  $\boldsymbol{\mathcal{V}}_t = \bar{\boldsymbol{\mathcal{X}}}_t, \, \gamma_{t+1} = \min(\frac{\gamma_t}{p}, 1);$ adaptive else  $\mathcal{V}_t = \mathcal{X}_t, \gamma_{t+1} = p\gamma_t;$ 7: momentum 8: 9: end if 10:  $\mathfrak{Z}_t = \mathfrak{V}_t - \frac{1}{\pi} P_\Omega (\mathfrak{V}_t - \mathfrak{O});$ // compute  $P_{\Omega} (\mathbf{v}_t - \mathbf{O})$  using sparse tensor format; for i = 1, ..., D do 11:  $\mathbf{X}_{t+1}^{i} = \operatorname{prox}_{\frac{\lambda_{i}}{\tau}\phi}((\mathbf{\mathfrak{Z}}_{t})_{\langle i \rangle}); // \operatorname{keep} \operatorname{as} \mathbf{U}_{t}^{i}(\mathbf{V}_{t}^{i})^{\top};$ 12: 13: end for 14: end for output  $\mathfrak{X}_{T+1}$ .

**Theorem 3.5.** The sequence  $\{X_t\}$  generated from Algorithm 1 has at least one limit point, and all limits points are critical points of  $F_{\tau}(X)$ .

**Theorem 3.7.** Let  $r_t = F_{\tau}(\mathbf{X}_t) - F_{\tau}^{\min}$ . If  $F_{\tau}$  has the uniformized KL property, for a sufficiently large  $t_0$ , we have

- 1. If  $\beta = 1$ ,  $r_t$  reduces to zero in finite steps; 2. If  $\beta \in [\frac{1}{2}, 1)$ ,  $r_t \leq (\frac{d_1 C^2}{1 + d_1 C^2})^{t - t_0} r_{t_0}$  where  $d_1 = \frac{2(\tau + \rho)^2}{\eta}$ ; 3. If  $\beta \in (0, \frac{1}{2})$ ,  $r_t \leq (\frac{C}{(t - t_0)d_2(1 - 2\beta)})^{1/(1 - 2\beta)}$  where  $d_2 = \min\{\frac{1}{2d_1C}, \frac{C}{1 - 2\beta}(2^{\frac{2\beta - 1}{2\beta - 2}} - 1)r_{t_0}\}.$
- tensor size:  $I_1 \times I_2 \times I_3$
- the speedup can be more the 100x on large tensors

# Experiments: synthetic data

|                  |        | small $I_3$ : $\bar{c} = 100$ , sparsity: 3.09% |                 |              | large $I_3$ : $\hat{c} = 40$ , sparsity:2.70% |              |                    |
|------------------|--------|-------------------------------------------------|-----------------|--------------|-----------------------------------------------|--------------|--------------------|
|                  |        | RMSE                                            | space (MB)      | time (sec)   | RMSE                                          | space (MB)   | time (sec)         |
| convex           | PA-APG | $0.0149 \pm 0.0011$                             | 302.4±0.1       | 2131.7±419.9 | $0.0098 {\pm} 0.0001$                         | 4804.5±598.2 | 6196.4±2033.4      |
| (nonconvex)      | GDPAN  | 0.0103±0.0001                                   | $171.5 \pm 2.2$ | 665.4±99.8   | 0.0006±0.0001                                 | 3243.3±489.6 | $3670.4 \pm 225.8$ |
| capped- $\ell_1$ | sNORT  | 0.0103±0.0001                                   | 14.0±0.8        | 27.9±5.1     | 0.0006±0.0001                                 | 44.6±0.3     | 575.9±70.9         |
|                  | NORT   | 0.0103±0.0001                                   | 14.9±0.9        | 5.9±1.6      | 0.0006±0.0001                                 | 66.3±0.6     | 89.4±13.4          |
| (nonconvex)      | GDPAN  | $0.0104 \pm 0.0001$                             | $172.2 \pm 1.5$ | 654.1±214.7  | 0.0006±0.0001                                 | 3009.3±376.2 | 3794.0±419.5       |
| LSP              | sNORT  | $0.0104 \pm 0.0001$                             | $14.4{\pm}0.1$  | 27.9±5.7     | 0.0006±0.0001                                 | 44.6±0.2     | 544.2±75.5         |
|                  | NORT   | $0.0104 \pm 0.0001$                             | 15.1±0.1        | 5.8±2.8      | 0.0006±0.0001                                 | 62.1±0.5     | 81.3±24.9          |
| (nonconvex)      | GDPAN  | $0.0104 \pm 0.0001$                             | 172.1±1.6       | 615.0±140.9  | 0.0006±0.0001                                 | 3009.2±412.2 | 3922.9±280.1       |
| TNN              | sNORT  | $0.0104{\pm}0.0001$                             | $14.4{\pm}0.1$  | 26.2±4.0     | 0.0006±0.0001                                 | 44.7±0.2     | 554.7±44.1         |
|                  | NORT   | 0.0103±0.0001                                   | 15.1±0.1        | 5.3±1.5      | 0.0006±0.0001                                 | 63.1±0.6     | 78.0±9.4           |

- GDPAN is the direct proximal average algorithm
- Nonconvex regularization offers much lower testing RMSEs
- NORT is much faster, needs much less memory and achieves much lower testing RMSEs

# Experiments: real data sets

|         |         | 0                   | - /                 | 0                   |                                                                                                                         |                                                                        |
|---------|---------|---------------------|---------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
|         |         | rice                | tree                | windows             |                                                                                                                         |                                                                        |
| convex  | ADMM    | $0.680 {\pm} 0.003$ | $0.915 \pm 0.005$   | $0.709 \pm 0.004$   | 0.35 [                                                                                                                  | 0.55                                                                   |
|         | PA-APG  | $0.583 {\pm} 0.016$ | $0.488 {\pm} 0.007$ | $0.585 {\pm} 0.002$ |                                                                                                                         | 0.5 ADMM                                                               |
|         | FaLRTC  | $0.576 {\pm} 0.004$ | $0.494{\pm}0.011$   | $0.567 \pm 0.005$   | 0.3 PA-APG FaLRTC                                                                                                       | FaLRTC                                                                 |
|         | FFW     | $0.634{\pm}0.003$   | $0.599 {\pm} 0.005$ | $0.772 \pm 0.004$   | W 0.25<br>SP 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                                         | U 0.35<br>2 0.35<br>2 0.3                                              |
|         | TR-MM   | $0.596 {\pm} 0.005$ | $0.515 \pm 0.011$   | $0.634 \pm 0.002$   | TMac                                                                                                                    | TMac                                                                   |
|         | TenNN   | $0.647 \pm 0.004$   | $0.562 \pm 0.004$   | $0.586 {\pm} 0.003$ | TR-MM<br>CP-OPT                                                                                                         | TR-MM                                                                  |
| factor- | RP      | $0.541 \pm 0.011$   | $0.524{\pm}0.010$   | $0.388 \pm 0.026$   | TMac-TT<br>TenNN                                                                                                        | TMac-T<br>0.15                                                         |
| ization | TMac    | $1.923 \pm 0.005$   | $1.750 \pm 0.006$   | $1.313 \pm 0.005$   | 0.1GDPAN                                                                                                                |                                                                        |
|         | CP-OPT  | $0.912 \pm 0.086$   | $0.733 \pm 0.060$   | $0.964 \pm 0.102$   |                                                                                                                         |                                                                        |
|         | TMac-TT | $0.729 \pm 0.022$   | $0.697 \pm 0.147$   | $1.045 \pm 0.107$   | 10 <sup>-2</sup> 10 <sup>-1</sup> 10 <sup>0</sup> 10 <sup>1</sup> 10 <sup>2</sup> 10 <sup>3</sup><br>cpu time (minutes) | 10 <sup>-2</sup> 10 <sup>0</sup> 10 <sup>2</sup><br>cpu time (minutes) |
| noncvx  | GDPAN   | 0.467±0.002         | 0.388±0.012         | 0.296±0.007         |                                                                                                                         |                                                                        |
|         | NORT    | $0.468 {\pm} 0.001$ | 0.386±0.009         | 0.297±0.007         | (a) <i>rice</i> .                                                                                                       | (b) <i>tree</i> .                                                      |

Table 4. Testing RMSEs ( $\times 10^{-1}$ ) on color images.

- NORT is fast and achieves lower testing RMSEs compared with other tensor low-rank approaches
- Same observations are on experiments with remote sensing data and multi-relational data (see our paper)

# Thanks.

- Questions: <u>yaoquanming@4paradigm.com</u>
- Codes: available on my Github