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Motivation

I A number of problems in numerical linear algebra have
witnessed remarkable speedups via linear sketching.

I For linear regression, we have nnz(A) + poly(d/ε) time
algorithms for a variety of convex loss functions.

I Can we apply the technique of linear sketching to non-convex
loss functions, e.g., the Tukey loss function?

M(x) =

{
x2 |x | ≤ 1

1 |x | > 1
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Row Sampling Algorithm

I Theorem 1 For a matrix A ∈ Rn×d and b ∈ Rn, there is a
row sampling algorithm that returns a weight vector w ∈ Rn,
such that for

x̂ = argmin

n∑
i=1

wiM((Ax − b)i ),

we have

n∑
i=1

M((Ax̂ − b)i ) ≤ (1 + ε) min
n∑

i=1

M((Ax − b)i ).

The weight vector w has at most poly(d log n/ε) non-zero
entries and can be computed in Õ(nnz(A) + poly(d log n/ε))
time.



Oblivious Sketch

I Theorem 2 There is a distribution S ∈ Rpoly(d log n)×n over
sketching matrices and weight vector w ∈ Rn, such that for

x̂ = argmin

n∑
i=1

wiM((SAx − Sb)i ),

we have

n∑
i=1

M((Ax̂ − b)i ) ≤ O(log n) min
n∑

i=1

M((Ax − b)i ).

I Calculating SA and Sb requires nnz(A) time.

I The sketch can be readily implemented in streaming and
distributed settings.



Technical Lemma

I Structural Lemma for Tukey Loss Function
I Lemma 1 For a given matrix A ∈ Rn×d , there is a set of

indices I ⊆ [n] with size |I | ≤ poly(dα), such that for any
y = Ax with

∑n
i=1 M(yi ) ≤ α, for all i ∈ [n] with |yi | ≥ 1, we

have i ∈ I .
I The set I can be efficiently constructed.

I Net Argument For Tukey Loss Function



For more details, hardness results, provable algorithms and
experiments, please come to poster #208!


