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Fairness and independence

Setup build prediction Ŷ of variable Y (e.g. payment default) based on
available information X (credit card history); prediction may be biased/unfair
wrt sensitive attribute Z (gender).
Most fairness work restricted to binary values of Y and Z.

DEO = P(Ŷ=1|Z=1,Y=1)− P(Ŷ=1|Z=0,Y=1)Equal Opportunity

DI = P(Ŷ=1|Z=0)

P(Ŷ=1|Z=1)
, disparate impact, demographic parity

Generalizations using independence notions

EO
generalizes to−−−−−−−−→ Ŷ ⊥⊥ Z|Y , even when Z non binary ,

Demographic Parity
generalizes to−−−−−−−−→ Ŷ ⊥⊥ Z , even when Z non binary .

We propose new metrics that also easily generalize to continuous variables.
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HGR: measuring independence

Definition (Hirschfeld-Gebelein-Rényi Maximum Correlation Coefficient)
Given two random variables U ∈ U and V ∈ V,

hgr(U,V) ≜ sup
f,g

ρ(f(U), g(V)) (1)

ρ:Pearson’s correlation; f, g such that E
[
f2(U)

]
,E

[
g2(V)

]
< ∞.

0 ≤ HGR(U,V) ≤ 1; HGR(U,V) = 0 iff V and U independent.
If f, g only linear functions, get CCA.
Connection exploited in RDC, [8] with CCA in RKHS
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Information theory and relaxation

Theorem (Witsenhausen’75)

Suppose U and V discrete and let matrix

Q(u, v) = π(u, v)√
πU(u)

√
πV(v)

, then hgr(U,V) = σ2(Q) .

π(u, v) joint distribution of (U,V); πU and πV marginals. σ2: 2nd largest singular value.

Upper bound on HGR by χ2-divergence
Extends naturally to continuous variables (replace sums by integrals)
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Fairness aware learning; Equalized Odds (EO)

Given expected loss L, function class H and fairness tolerance ε > 0, solve :

argmin
h∈H

L(h,X,Y) subject to HGR|∞ ≜ ||HGR(Ŷ|Y = y,Z|Y = y)||∞ ≤ ε

Practicals: Relax constraint HGR|∞ ≤ ε to get tractable penalty : If

χ2|1 =
∥∥χ2 (π̂(ŷ|y, z|y), π̂(ŷ|y)⊗ π̂(z|y))

∥∥
1
, this yields

argmin
h∈H

L(h,X,Y) + λχ2|1

Related work : [2], [5],[9], [4], [1], [3], [6], [11], [7, 10]
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Y and Z binary valued: comparison with previous work

Test case use our proposal with neural network to train a classifier such that a
binary sensitive Z does not unfairly influence an outcome Ŷ. Reproduce and
compare experiments from Donini et al. '18 [3].

Goal: maintain good accuracy while having a smaller DEO.
Results comparable to state of the art
Smaller datasets difficult for our proposal. NN effect.

Arrhythmia COMPAS Adult German Drug
Method ACC DEO ACC DEO ACC DEO ACC DEO ACC DEO
Naïve SVM 75±4 11±3 72±1 14±2 80 9 74±5 12±5 81±2 22±4
SVM 71±5 10±3 73±1 11±2 79 8 74±3 10±6 81±2 22±3
FERM 75±5 5±2 96±1 9±2 77 1 73±4 5±3 79±3 10±5
NN 74±7 19±14 97±0 1±0 84 14 74±4 47±19 79±3 15±16
NN + χ2 75±6 15±9 96±0 0±0 83 3 73±3 25±14 78±5 0±0
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Continuous Case: Criminality Rates

Dataset : UCI Communities+and+Crime. 2 sets of experiments, 3 fairness
penalties :

Linear regression (LR), full batches of data
Deep neural nets (DNN) with mini-batches (n = 200; Adam as optimizer)
Regularization parameter λ varies 2−4 to 26

We find :
DNN improves fairness at lower price than linear models in terms of MSE.
Important that fairness penalty be compatible with DNNs
χ2|1 and KL|1 work smoothly with mini-batched stochastic optimization;
contrast with baseline LŶ|Z,Y

2 penalty which suffers from mini-batching
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