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Privately Learning Union of Polygons 
Given: 𝒏 points in  ℝ𝟐  with binary labels: 𝒙𝒊, 𝒚𝒊 𝒊=𝟏

𝒏  
 

Assume: ∃collection of polygons 𝑷𝟏, … , 𝑷𝒕  with a total of al most 𝒌 edges s.t. ∀𝒊 ∈ 𝒏 : 𝒙𝒊 ∈  𝑷𝒋𝒋 ⟺ 𝒚𝒊 = 𝟏 
 

Find: Hypothesis 𝒉:ℝ𝟐 → 𝟎, 𝟏  with small error 
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 Goal: the output hypothesis does not reveal information that is specific to any single individual 
 

Privately Learning Union of Polygons POSTER #124 



Given: 𝒏 points in  ℝ𝟐  with binary labels: 𝒙𝒊, 𝒚𝒊 𝒊=𝟏
𝒏  

 

Assume: ∃collection of polygons 𝑷𝟏, … , 𝑷𝒕  with a total of al most 𝒌 edges s.t. ∀𝒊 ∈ 𝒏 : 𝒙𝒊 ∈  𝑷𝒋𝒋 ⟺ 𝒚𝒊 = 𝟏 
 

Find: Hypothesis 𝒉:ℝ𝟐 → 𝟎, 𝟏  with small error, while providing differential privacy for the training data: 
 

 Every labeled example represents the (private) information of one individual 
 

 Goal: the output hypothesis does not reveal information that is specific to any single individual 
 

 Requirement: the output distribution is insensitive to any arbitrarily change of a single input example 
             (an algorithm satisfying this requirement is differentially private) 
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Why is that a good privacy definition? 
 

Even if an observer knows all other data point but mine, and now she sees the 
outcome of the computation, then she still cannot learn “anything” on my data point 
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Motivation: Analyzing Users’ Location Reports 

• Analyzing GPS navigation data 
 

• Learning the shape of a flood or a fire based on reports 
 

• Identifying regions with poor cellular reception based on reports 
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Differential Privacy and Discretization 

• Impossibility results for differential privacy show that this problem (and even much simpler problems) cannot 
be solved over infinite domains 
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• Furthermore, the sample complexity must grow with the size of the discretization 
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Previous Result 
Private learner with sample complexity 
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Summary 
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 Efficient runtime and sample complexity 
 

 Applications to privately analyzing users’ location data 
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