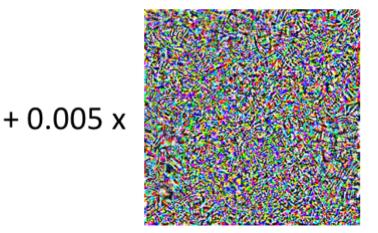
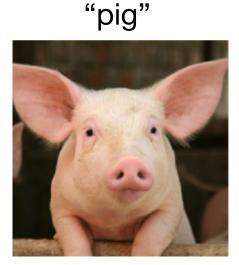
Exploring the Landscape of Spatial Robustness

Logan Engstrom

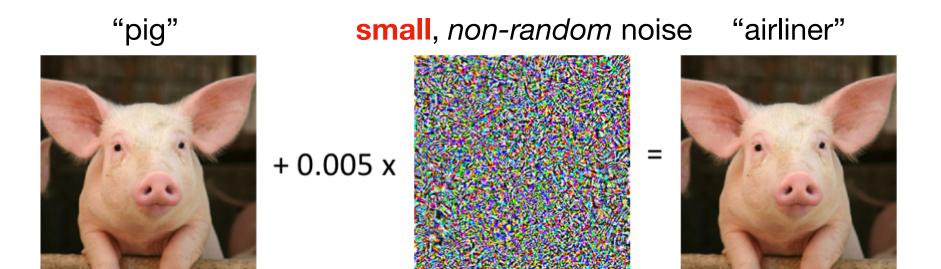
(with Brandon Tran^{*}, Dimitris Tsipras^{*}, Ludwig Schmidt, Aleksander Mądry)

madry-lab.ml

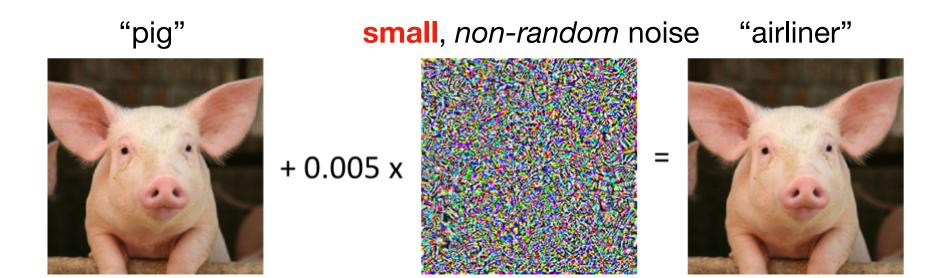

"pig"



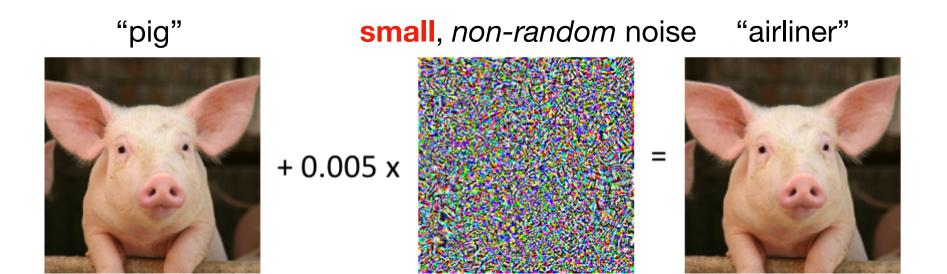
"pig"



small, non-random noise



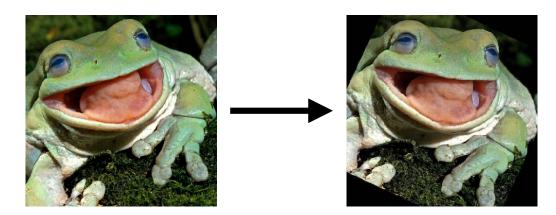
small, *non-random* noise "airliner" + 0.005 x



What does **small** mean here?

What does **small** mean here?

Traditionally: perturbations that have small I_p norm



What does small mean here?

Traditionally: perturbations that have small I_p norm

Do small I_p norms capture every sense of "small"?

rotation up to 30°

rotation up to 30°

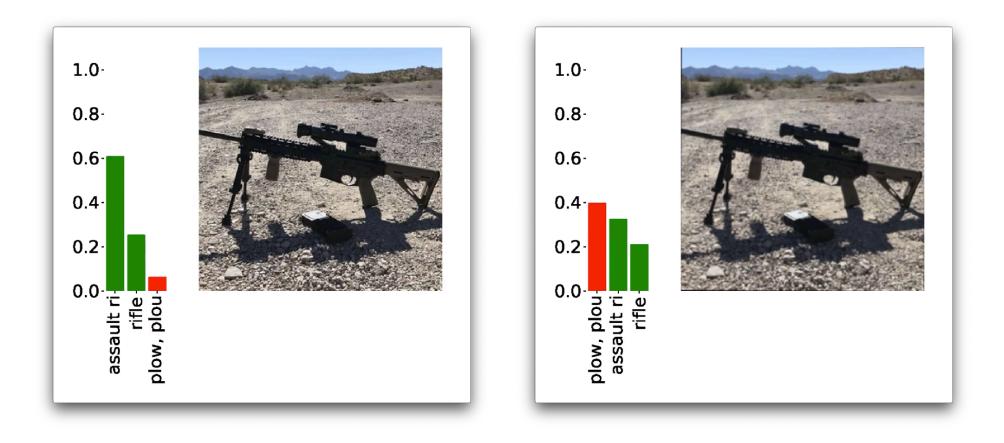
x, y translations up to ~10%

rotation up to 30°

x, y translations up to ~10%

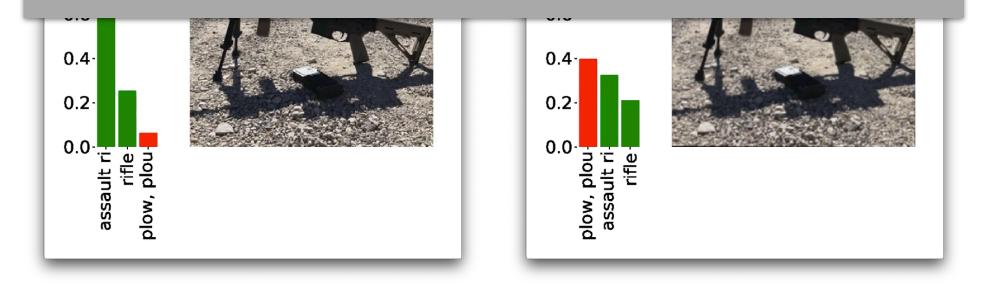
These are **not** small I_p perturbations!

rotation up to 30°


x, y translations up to ~10%

These are **not** small I_p perturbations!

How robust are models to spatial perturbations?


Spoiler: models are not robust

Spoiler: models are not robust

Spoiler: models are not robust

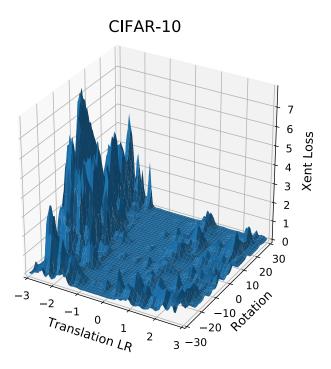
Can we train more spatially robust classifiers?

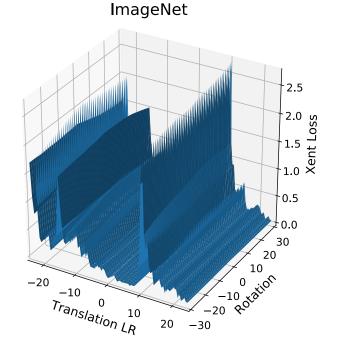
Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

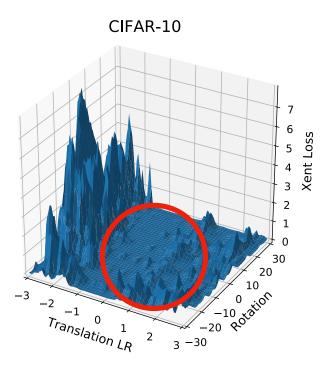

Key question: how to find worst-case translations, rotations?

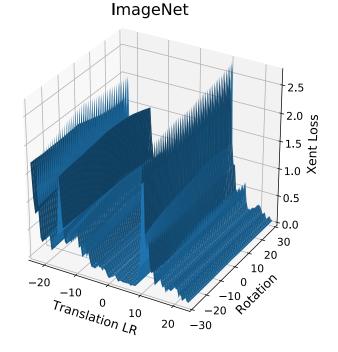

Attempt #1: first-order methods

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods





Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods

Attempt #2: exhaustive search

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods

Attempt #2: exhaustive search

Exhaustive search is feasible, and a strong adversary!

(discretize translations and rotations, try every combination)

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

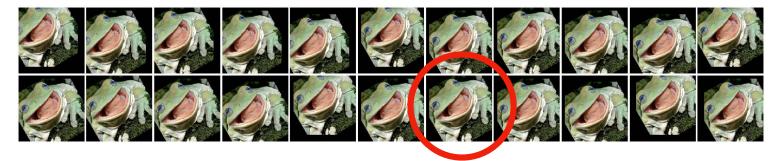
Attempt #1: first order methods

Attempt #2: exhaustive search

Exhaustive search is feasible, and a strong adversary!

(discretize translations and rotations, try every combination)

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}


Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods

Attempt #2: exhaustive search

Exhaustive search is feasible, and a strong adversary!

(discretize translations and rotations, try every combination)

Train only on "worst" transformed input (highest loss)

Lesson from I_p robustness: use robust optimization (= train on worst-case perturbed inputs) ^{[Goodfellow et al '15][Madry et al '18]}

Key question: how to find worst-case translations, rotations?

Attempt #1: first order methods

Attempt #2: exhaustive search

Exhaustive search is feasible, and a strong adversary!

(discretize translations and rotations, try every combination)

(we approximate via 10 random samples to quicken training)

With robust optimization:

With robust optimization:

CIFAR classifier accuracy: 3% adversarial to 71% adversarial

With robust optimization:

CIFAR classifier accuracy: 3% adversarial to **71% adversarial** (compare to **93%** standard accuracy)

With robust optimization:

CIFAR classifier accuracy: 3% adversarial to **71% adversarial** (compare to **93%** standard accuracy)

ImageNet classifier accuracy: 31% adversarial to 53% adversarial

With robust optimization:

CIFAR classifier accuracy: 3% adversarial to **71% adversarial** (compare to **93%** standard accuracy)

ImageNet classifier accuracy: 31% adversarial to **53% adversarial** (compare to **76%** standard accuracy)

With robust optimization: (+10 sample majority vote)

CIFAR classifier accuracy: 3% adversarial to **71% adversarial** (compare to **93%** standard accuracy)

ImageNet classifier accuracy: 31% adversarial to **53% adversarial** (compare to **76%** standard accuracy)

With robust optimization: (+10 sample majority vote) CIFAR classifier accuracy: 3% adversarial to 7% adversarial (compare to 93% standard accuracy)

ImageNet classifier accuracy: 31% adversarial to **53% adversarial** (compare to **76%** standard accuracy)

With robust optimization: (+10 sample majority vote) CIFAR classifier accuracy: 3% adversarial to 7% adversarial (compare to 93% standard accuracy) ImageNet classifier accuracy: 31% adversarial to 5% adversarial (compare to 76% standard accuracy)

With robust optimization: (+10 sample majority vote) CIFAR classifier accuracy: 3% adversarial to 7% adversarial (compare to 93% standard accuracy) ImageNet classifier accuracy: 31% adversarial to 56% adversarial (compare to 76% standard accuracy)

Still significant room for improvement!

Robust models need more refined notions of similarity

Robust models need more refined notions of similarity

We do not have true spatial robustness

Robust models need more refined notions of similarity

We do not have true spatial robustness

Intuitions from I_p robustness do not transfer

Robust models need more refined notions of similarity

We do not have true spatial robustness

Intuitions from I_p robustness do not transfer

Come to our poster! Pacific Ballroom #142