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Motivation: a well specified reward function remains an 
important assumption for applying RL in practice

Simulation Real World

Often easier to provide expert data and learn a reward function using inverse RL 
Inverse RL frequently requires a lot of data to learn a generalizable reward 

This is due in part with the fundamental ambiguity of reward learning
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Goal: how can agents infer rewards from  
one or a few demonstrations?

Shared Context → Efficient adaptation

Intuition: demonstrations from previous tasks induce a prior over the space 
of possible future tasks
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Meta-inverse reinforcement learning: using prior 
tasks information to accelerate inverse-RL
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Our approach:  Meta reward and intention learning
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Domain 1: SpriteWorld environment

Each task is a specific landmark navigation task

Each task exhibits the same terrain preferences

Evaluation time varies the position of landmark and uses unseen sprites

Evaluation 
time
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Domain 2: First person navigation (SUNCG)
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Tasks require both learning navigation (NAV) and picking (PICK)
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Tasks require both learning navigation (NAV) and picking (PICK)

Domain 2: First person navigation (SUNCG)

Task illustration Agent view

Tasks share a common theme but differ in visual layout and 
specific goal  
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Results: With only a limited number of demonstrations, 
performance is significantly better 
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Results: Optimizing initial weights 
consistently improves performance across tasks

Success rate is significantly improved on both test and unseen 
house layouts especially on the harder PICK task
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Reward function can be adapted with a limited 
number of demonstrations
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Thanks!  
Tuesday, Poster #222 

Kelvin Xu Ellis Ratner Anca Dragan Sergey Levine Chelsea Finn


