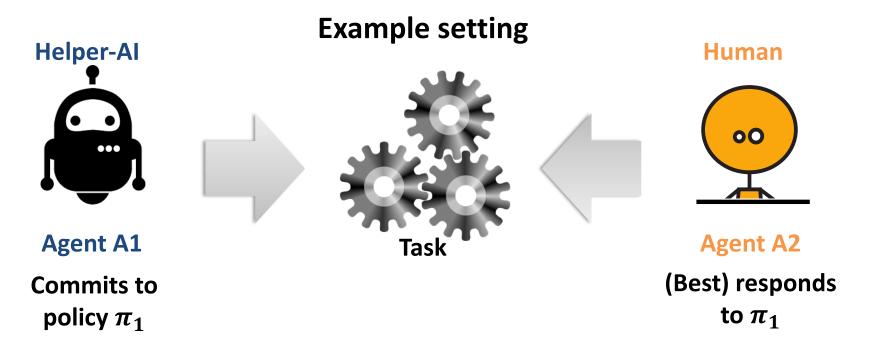
Learning to Collaborate in Markov Decision Processes

Goran Radanovic, Rati Devidze, David C. Parkes, Adish Singla

HARVARD John A. Paulson School of Engineering and Applied Sciences

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

Motivation: Human-AI Collaboration

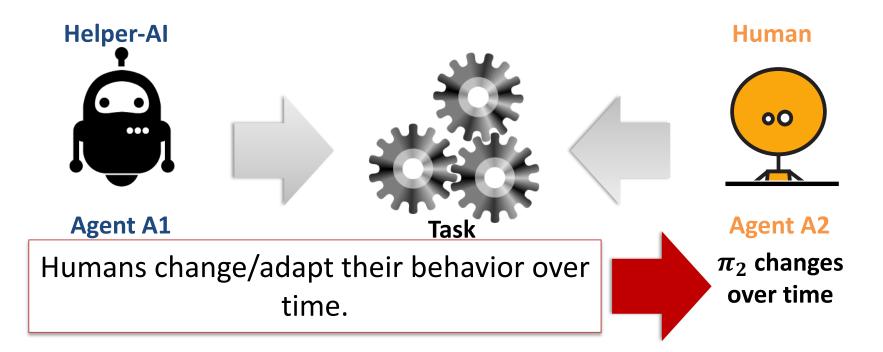


Behavioral differences

Agents have different models of the world

[Dimitrakakis et al., NIPS 2017]

Motivation: Human-AI Collaboration

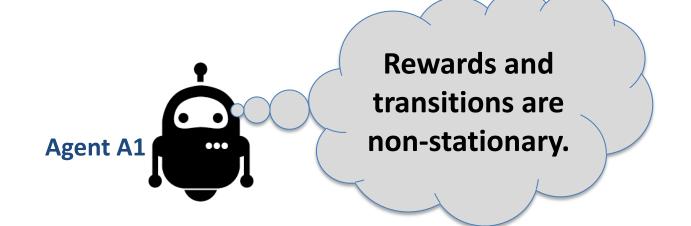


Can we utilize learning to adopt a good policy for A1 despite the changing behavior of A2, without detailing A2's learning dynamics?

Formal Model: Two-agent MDP

- *Episodic* two-agent MDP with *commitments*
- Goal: design a learning algorithm for A1 that achieves a sublinear regret

- Implies near optimality for *smooth* MDPs

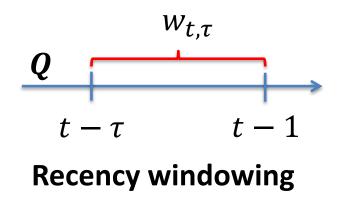


Experts with Double Recency Bias

- Based on experts in MDPs:
 - Assign an experts algorithm to each state
 - Use Q values as experts' losses

[Even-Dar et al., NIPS 2005]

• Introduce double recency bias



$$\pi_t = \frac{1}{\Gamma} \sum_{\tau=1}^{\Gamma} w_{t,\tau}$$

Recency modulation

Main Results (Informally)

Theorem: The regret or ExpDRBias decays as $O(T^{\max\left\{1-\frac{3\cdot\alpha}{7},\frac{1}{4}\right\}})$, provided that the *magnitude change* of A2's policy is $O(T^{-\alpha})$.

Theorem: Assume that the magnitude change of A2's policy is $\Omega(1)$. Then achieving a sublinear regret is at least as hard as *learning parity with noise*.

Thank you!

• Visit me at the poster session!

