Learning Structured Decision Problems with Unawareness

Craig Innes (craig.innes@ed.ac.uk), Alex Lascarides (alex@inf.ed.ac.uk)

Institute for Language, Cognition and Computation University of Edinburgh

Why Unawareness?

 $\mathcal{X} = \{ Prec, Protein, Yield \}$ $\mathcal{A} = \{ Grain, Fert \}$ $scope(\mathcal{R}) = \{ Yield, Protein \}$ $Pa_{Prot} = \{ Grain \}$ $P(Prot = p | Grain = g) = \theta_{p|g}$

Why Unawareness?

 $\mathcal{X}^0 \subseteq \mathcal{X}^+$ $\mathcal{A}^0 \subseteq \mathcal{A}^+$ $scope_0(\mathcal{R}) \subseteq scope_+(\mathcal{R})$ $Pa_{Prot} = \{Grain\}$

 $P(Prot = p | Grain = g) = \theta_{p|g}$

Our agent learns an **interpretable model** of a decision problem **incrementally** via evidence from **domain trials** and **expert advice**.

Our agent learns an **interpretable model** of a decision problem **incrementally** via evidence from **domain trials** and **expert advice**.

Evidence may reveal actions/variables the agent was **completely unaware of** prior to learning.

Types of Advice

1. Advice on Better Actions

- 2. Resolving Misunderstandings
- 3. Unexpected Rewards
- 4. Unknown Effects

If agent's performance in last k trials is below threshold β of true policy π_+ , say:

If agent's performance in last k trials is below threshold β of true policy π_+ , say:

"At time t you should have done a' = $\langle A_1=0, A_2=1, \, A_3=0 \, \rangle$ rather than a_t "

If agent's performance in last k trials is **below threshold** β of true policy π_+ , say:

"At time t you should have done a' = $\langle A_1=0, A_2=1, \, A_3=0 \, \rangle$ rather than a_t "

- Action variable A_3 is part of the problem $(A_3 \in A)$
- A_3 is relevant $(\exists X \in scope(\mathcal{R}), anc(A_3, X))$
- There exists a better reward $(\exists s, s[\mathcal{B}^t] = s_t[\mathcal{B}^t] \land \mathcal{R}_+(s) > r_t)$
- a' has a greater expected utility than a_t (EU(a'|s) > EU(a_t|s))

Conserving Previous Beliefs

 $P(\operatorname{Pa}_{Yield} | D_{0:t})$ $Pa_{Yield} = \emptyset$

$$Pa_{Yield} = \{Fert\}$$

 $Pa_{Yield} = \{Fert, Prec, Grain\}$

Conserving Previous Beliefs

 $P(Pa_{Yield} | D_{0:t})$ $Pa_{Yield} = \emptyset$ $Pa_{Yield} = \{Fungus\}$ $Pa_{Yield} = \{Fert\}$ $Pa_{Yield} = \{Fert, Fungus\}$ $Pa_{Yield} = \{Fert, Prec, Grain\}$ $Pa_{Yield} =$ {*Fert*, *Prec*, *Grain*, *Fungus*}

Conserving Previous Beliefs

 $P(Pa_{Yield} | D_{0:t})$ $Pa_{\text{Vield}} = \emptyset$ $Pa_{Yield} = \{Fungus\}$ $Pa_{Yield} = \{Fert\}$ $Pa_{Yield} = \{Fert, Fungus\}$ $Pa_{Yield} = \{Fert, Prec, Grain\}$ $Pa_{Yield} =$ {*Fert*, *Prec*, *Grain*, *Fungus*}

$$P_{new}(Pa_X) = \begin{cases} (1-\rho)P_{old}(Pa_X|D_{0:t}) & \text{if } Fungus \notin Pa_X\\ \rho P_{old}(Pa_X^{'}|D_{0:t}) & \text{if } Pa_X = Pa_X^{'} \cup \{Fungus\} \end{cases}$$

Randomly Generated Networks: 12 - 36 Variables

- 12 36 Variables
- 3000 Trials
- ϵ -greedy strategy
- Expert Aid $\beta = 0.1$

Results

Results

Results

Conclusions and Contact Details + Paper Link

Paper

Learning Structured Decision Problems with Unawareness

Authors

Craig Innes (craig.innes@ed.ac.uk)

Alex Lascarides (alex@inf.ed.ac.uk)

Poster Session:

6:30pm-9pm, Pacific Ballroom #35