Finite-Time Analysis of Distributed TD(0) On Multi-Agent Systems

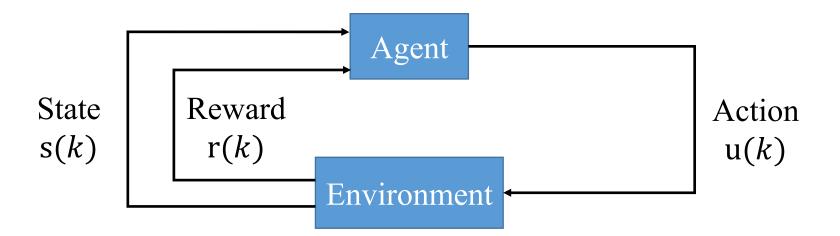
Thinh T. Doan

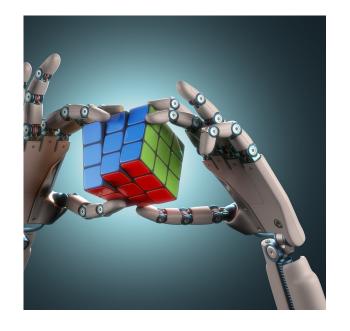
School of Electrical and Computer Engineering School of Industrial and System Engineering

Joint work with S. T. Maguluri and J. Romberg – GaTech

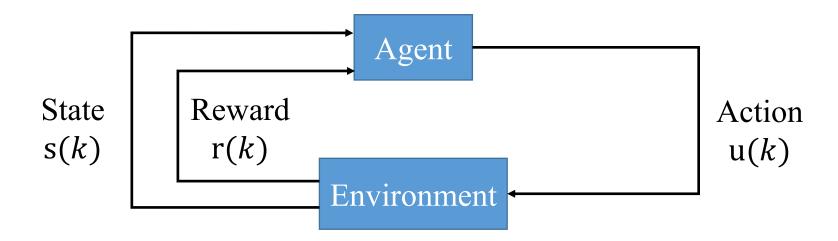
ICML, Long Beach, CA, 2019

Reinforcement Learning





Policy Evaluation Problems



Problem: given a stationary policy μ , find discounted accumulative reward $J^*: S \to \mathbb{R}$

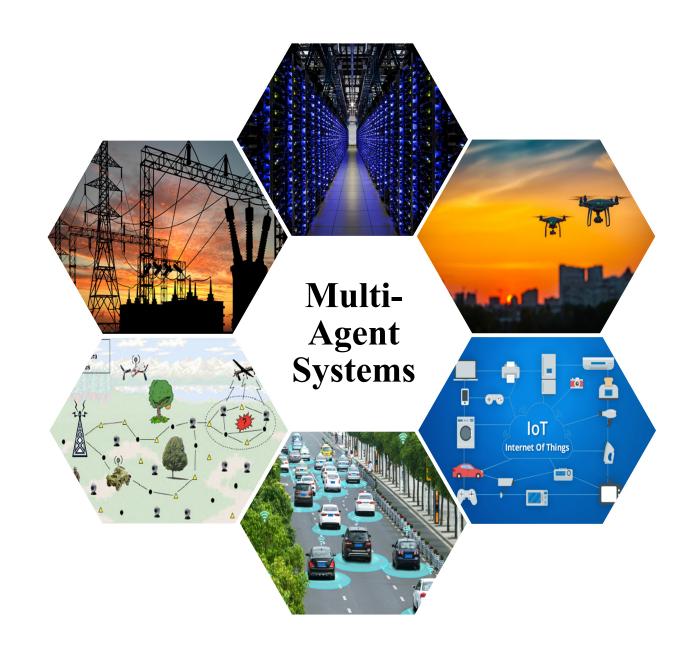
$$J^*(i) \triangleq \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k \mathcal{R}((s(k), s'(k)) | s(0) = i\right],$$

where (s(k), r(k), s'(k)) is the observation at time k

❖ Bellman equation

$$J^*(i) \triangleq \sum_{j=1}^n p_{ij} \left[\mathcal{R}(i,j) + \gamma J^*(j) \right]$$

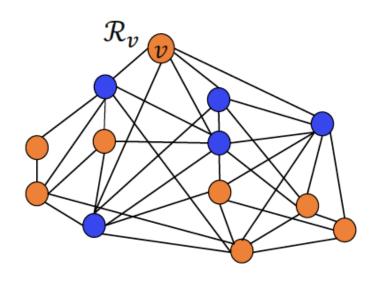
Multi-Agent Systems



Multi-Agent Reinforcement Learning

- A network of N agents communicating through $G(k) = (\mathcal{V}, \mathcal{E}(k))$
- ❖ Agent v applies a stationary policy $\mu_v : S \to U_v$
- lacktriangle Agent v receives an instantaneous reward \mathcal{R}_v
- ❖ Goal: collaborate to find discounted reward $J^*: S \to \mathbb{R}$

$$J^*(i) \triangleq \mathbb{E}\left[\frac{1}{N}\sum_{k=0}^{\infty} \gamma^k \sum_{v \in \mathcal{V}} \mathcal{R}_v(s(k), s'(k)) \,|\, s(0) = i\right]$$



Linear Function Approximation

 \bullet Low-dimensional approximation \tilde{J} of J^* , parameterized by $\theta \in \mathbb{R}^K$

$$ilde{J}(i, heta) = \sum_{\ell=1}^K heta_\ell \phi_\ell(i)$$

where $\phi_{\ell}: \mathcal{S} \to \mathbb{R}$ is the set of $K \ll n$ feature vectors known by the nodes

Goal: each node finds θ^* s.t. \tilde{J} is the best approximation of J^*

Distributed Temporal Difference Learning

 \bullet Low-dimensional approximation \tilde{J} of J^* , parameterized by $\theta \in \mathbb{R}^K$

$$ilde{J}(i, heta) = \sum_{\ell=1}^K heta_\ell \phi_\ell(i)$$

where $\phi_{\ell}: \mathcal{S} \to \mathbb{R}$ is the set of $K \ll n$ feature vectors known by the nodes

- **Goal**: each node finds θ^* s.t. \tilde{J} is the best approximation of J^*
- **Distributed TD(0)**: each node maintains θ_{ν} , an estimate of θ^*
- \diamond Observe one sample $(s(k), r_v(k), s'(k))$ and sequentially update θ_v

$$\theta_v(k+1) = \sum_{u \in \mathcal{N}_v(k)} a_{vu}(k)\theta_u(k) + \alpha(k)d_v(k)\phi(s(k))$$

where the TD $d_{\nu}(k)$ is given

$$d_v(k) = r_v(k) + \theta_v(k)^T \Big(\gamma \phi(s'(k)) - \phi(s(k)) \Big)$$

Main Results

Mirror the results of distributed SGD for solving convex optimization

Finite-Time Analysis

1. If $\alpha(k) = \alpha > 0$ then

$$\|\tilde{J}(\hat{\theta}_v(k)) - \tilde{J}(\theta^*)\|_D^2 \le \frac{C_0}{1-\gamma} \frac{1}{k+1} + \frac{C_1 \alpha}{1-\gamma}$$

2. If $\alpha(k) = \frac{1}{\sqrt{k+1}}$ then

$$\left\| \tilde{J}(\hat{\theta}_v(k)) - \tilde{J}(\theta^*) \right\|_D^2 \le \mathcal{O}\left(\frac{C_2 \ln(k+1)}{(1-\gamma)\sqrt{k+1}}\right)$$

$$||J||_D^2 = J^T DJ \qquad \qquad \hat{\theta}_v(k) = \frac{\sum_{t=0}^k \alpha(t)\theta_v(t)}{\sum_{t=0}^k \alpha(t)}$$

Finite-Time Analysis

 \circ Recall that θ^* satisfies

$$A\,\theta^* = \frac{1}{N} \sum_{v \in \mathcal{V}} b_v$$

where

$$A = \mathbb{E}_{\pi} \left[\phi(s) \Big(\phi(s) - \gamma \phi(s') \Big)^T \right] \quad ext{and} \quad b_v = \mathbb{E}_{\pi} \left[r_v \phi(s) \right]$$

• Let σ_{\min} and σ_{\max} be the smallest and largest singular value of A

Finite-Time Analysis

1. If
$$\alpha(k) = \alpha \in \left(0, \frac{1}{\sigma_{min}}\right)$$
 then
$$\mathbb{E}\left[\|\hat{\theta}_v(k) - \theta^*\|^2\right] \le C_3 \rho^k + \frac{C_4 \sigma_{\max} \alpha}{1 - \rho}$$
2. If $\alpha(k) = \frac{\alpha_0}{k+1}$ where $\alpha_0 > \frac{1}{\sigma_{min}}$ then
$$\mathbb{E}\left[\|\hat{\theta}_v(k) - \theta^*\|^2\right] \le \mathcal{O}\left(\frac{C_5 \sigma_{\max}}{\sigma_{\min}(1 - \delta)} \frac{\ln(k+1)}{k+1}\right)$$

$$\rho = \max\{1 - \sigma_{\min}\alpha, \delta\} \in (0, 1)$$

$$\hat{\theta}_v(k) = \frac{\sum_{t=0}^k \alpha(t)\theta_v(t)}{\sum_{t=0}^k \alpha(t)}$$

Thinh T. Doan

thinhdoan@gatech.edu

Thank you for your attention!