PAC Identification of Many Good Arms in Stochastic Multi-Armed Bandits

Arghya Roy Chaudhuri under the guidance of Prof. Shivaram Kalyanakrishnan

Indian Institute of Technology Bombay, India

What Is It All About?

What Is It All About?

What Is It All About?

What Is a Multi-Armed Bandit?

Bandits: Slot machines Mean: Pr[Reward = 1]

What Is a Multi-Armed Bandit?

Bandits: Slot machines Mean: Pr[Reward = 1] • To identify the best arm:

$$\mathbb{E}[\mathsf{SC}] = \Omega\left(rac{\mathsf{n}}{\epsilon^2}\lograc{1}{\delta}
ight)$$

• To identify the best subset of size *m*:

$$E[\mathsf{SC}] = \Omega\left(rac{\mathsf{n}}{\epsilon^2}\lograc{\mathsf{m}}{\delta}
ight)$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

What Is a Multi-Armed Bandit?

• To identify the best arm:

$$\mathbb{E}[\mathsf{SC}] = \Omega\left(rac{\mathsf{n}}{\epsilon^2}\lograc{1}{\delta}
ight)$$

• To identify the best subset of size *m*:

$$E[\mathsf{SC}] = \Omega\left(rac{\mathsf{n}}{\epsilon^2}\lograc{\mathsf{m}}{\delta}
ight)$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty.$$

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

• Identifying 1 from the best ρ -fraction is possible.

イロト イポト イヨト イヨト

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

Difficulty for $n \gg T$:

$$\lim_{n\to\infty} \frac{n}{\epsilon^2} \log \frac{1}{\delta} = \infty$$

Get around:

- Identifying 1 from the best ρ -fraction is possible.
- Redefine the problem to identify 1 from the best *m* arms.
- Defining $\rho = \frac{m}{n}$, generalise the problem.
- What if we *n* is relatively small?

イロト イポト イヨト イヨト

 $(\mathbf{k}, \mathbf{m}, \mathbf{n})$: To identify **any** distinct **k** arms from the **best m** arms in a set of **n** arms.

 $(\mathbf{k}, \mathbf{m}, \mathbf{n})$: To identify **any** distinct **k** arms from the **best m** arms in a set of **n** arms.

 k = 1: Any 1 arm out of the best subset of size m.

<ロ> <同> <同> < 回> < 回>

 $(\mathbf{k}, \mathbf{m}, \mathbf{n})$: To identify **any** distinct **k** arms from the **best m** arms in a set of **n** arms.

• **k** = **m**: Best *subset* identification.

イロン イヨン イヨン イヨン

 $(\mathbf{k}, \mathbf{m}, \mathbf{n})$: To identify **any** distinct **k** arms from the **best m** arms in a set of **n** arms.

• k = m = 1: Best arm identification.

・ロン ・四 と ・ ヨ と ・ ヨ と

3

 $(\mathbf{k}, \mathbf{m}, \mathbf{n})$: To identify **any** distinct **k** arms from the **best m** arms in a set of **n** arms.

Contributions:

- LUCB-k-m (Fully sequential + Adaptive).
- Worst case upper and lower bound.

- **k** = 1: Any 1 arm out of the best *subset* of size *m*.
- **k** = **m**: Best *subset* identification.
- k = m = 1: Best arm identification.

 (\mathbf{k}, ρ) : To identify **any** distinct **k** arms from the **best** ρ fraction of arms.

 $({f k},
ho)$ Not well-posed $(\mathbf{k},
ho)$ Well-posed (\mathbf{k}, ρ)

 (\mathbf{k}, ρ) : To identify **any** distinct **k** arms from the **best** ρ fraction of arms. $({f k},
ho)$ Not well-posed $P_{\mathcal{A}}$ $(\mathbf{k},
ho)$ Well-posed (\mathbf{k}, ρ) Which one is easier to solve (1, m, n) or (1, P)?

Email: arghya@cse.iitb.ac.in