Warm-starting contextual bandits: robustly combining supervised and bandit feedback

Chicheng Zhang¹; Alekh Agarwal¹; Hal Daumé III^{1,2}; John Langford¹; Sahand Negahban³ ¹Microsoft Research, ²University of Maryland, ³Yale University

Warm-starting contextual bandits

- For timestep t = 1, 2, ... T:
 - Observe context x_t with associated cost $c_t = (c_t(1), ..., c_t(K))$ from distribution D
 - Take an action $a_t \in \{1, \dots K\}$
 - Receive cost $c_t(a_t) \in [0,1]$
- **Goal:** incur low cumulative cost: $\sum_{t=1}^{T} c_t(a_t)$

Warm-starting contextual bandits

- Receive warm-starting examples $S = \{(x, c)\} \sim W$
- For timestep t = 1, 2, ... T:
 - Observe context x_t with associated cost $c_t = (c_t(1), \dots, c_t(K))$ from distribution D
 - Take an action $a_t \in \{1, \dots K\}$
 - Receive cost $c_t(a_t) \in [0,1]$
- Goal: incur low cumulative cost: $\sum_{t=1}^{T} c_t(a_t)$

Warm-starting contextual bandits: motivation

- Some labeled examples often exist in applications, e.g.
 - News recommendation: editorial relevance annotations
 - Healthcare: historical medical records w/ prescribed treatments
- Leveraging historical data can reduce unsafe exploration

Warm-starting contextual bandits: motivation

- Some labeled examples often exist in applications, e.g.
 - News recommendation: editorial relevance annotations
 - Healthcare: historical medical records w/ prescribed treatments
- Leveraging historical data can reduce unsafe exploration

Key Challenge: *W* may not be the same as *D*

- Editors fail to capture users' preferences
- Medical record data from another population

How to utilize the warm-starting examples robustly and effectively?

Algorithm & performance guarantees

ARRoW-CB: iteratively finds the best relative weighting of warm-start and bandit examples to rapidly learn a good policy

Algorithm & performance guarantees

ARRoW-CB: iteratively finds the best relative weighting of warm-start and bandit examples to rapidly learn a good policy

• Theorem (informal):

Compared to algorithms that ignore S, * the regret of ARRoW-CB is

- never much worse (robustness)
- much smaller, if W and D are close enough, and |S| is large enough

Empirical evaluation

- 524 datasets from openml.org
- CDFs of normalized errors

Empirical evaluation

- 524 datasets from openml.org
- CDFs of normalized errors

- Moderate noise setting
- Algorithms: ARRoW-CB, Sup-Only, Bandit-Only, Sim-Bandit (uses both sources)

Empirical evaluation

- 524 datasets from openml.org
- CDFs of normalized errors

- Moderate noise setting
- Algorithms: ARRoW-CB, Sup-Only, Bandit-Only, Sim-Bandit (uses both sources)

Poster Thu #52