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Context and Motivation

Sequential A/B testing use cases

Most of digital applications perform sequential A/B testing in order to optimize their
audience. For instance, Orange web portal performs marketing optimization for
promoting services:
If I would like to promote Orange TV which banner is the best ?
Should I push on Games of Thrones or on Sports?
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Context and Motivation

(Centralized) Exploration Problem

Definition 1 (ε-optimal arm)

An arm k P K is said to be ε-optimal, if µk ¥ µk� � ε, where
k� � argmaxkPK µk ,ε P p0, 1s, and µk is the mean reward of arm k .

Centralized approach:

The click stream of users is gathered
and processed by a Best Arm
Identification algorithm to choose with
high probability an ε-optimal arm.

Do we really need to gather billions of
logs containing private user’s
information for handling sequential A/B
testing use cases ?
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Decentralized Exploration Problem

Problem setting

Definition 2 (message)

A message is a random variable, that is sent by player n to other players.

1 When the event "player n is
active" occurs, player n reads the
messages received from other
players

2 Player n chooses an arm to play.
3 The reward of the played arm is

revealed to player n.
4 Player n may update its set of

arms and/or send a message to
the other players.

Goal

Designing an algorithm that samples effectively to find an ε-optimal arm for each
player, while ensuring privacy and minimizing the number of messages.
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Decentralized Exploration Problem

Privacy guarantee

We define the privacy level as the information about the preferred arms of a player, that
an adversary could infer by intercepting the messages of this player.

Definition 3 (pε, ηq-private).

The decentralized algorithm A is pε, ηq-private for finding an ε-approximation of the best
arm, if for any player n, Eη1, 0   η1   η   1 such that an adversary, that knows Mn,
the set of messages of player n, and the algorithm A, can infer what arm is an
ε-approximation of the best arm for player n with a probability at least 1� η1:

@n P N , @ln P t1, ..., Lu, P
�
Knplnq � Kε|Mn,A

�
¥ 1� η1,

where Kε is the set of ε-optimal arms, and Kn is the set of arms of player n, and ln is
the number of times where Kn has been updated, and L ¤ K .

1� η is the confidence level associated to the decision of the adversary: the higher η,
the higher the privacy protection.
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Decentralized Elimination Algorithm

Decentralized Elimination: the principle

An Arm Selection Subroutine is run on each player. The players exchange the indexes
of arms that they eliminate with a high probability of failure η. The high probability of
failure insures privacy of messages. When enough players vote for the elimination of
an arm, it is eliminated for all players.

Why does it work ?

When M ¤ N players independently eliminate an arm with a probability of failure η,
then the probability of failure of the group of M voting players is δ � ηM .
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Decentralized Elimination Algorithm

Decentralized Elimination: a generic algorithm

Definition 4 (Arm Selection Subroutine)

An ArmSelection subroutine takes as parameters an approximation factor ε, a failure
probability η, and a set of remaining arm Knplnq, where ln is the number of times Kn

has been updated. It samples a remaining arm in Knplnq and returns the set of
eliminated arms Knplnq.
An ArmSelection subroutine satisfies Properties 1 and 2.

Property 1 (remaining ε-optimal arm)

@ln P t1, ..., Lu,Kn �ln� � Kn �ln � 1
�
,

P
�
tKnplnq XKε � Hu|Htn ,Kn �ln � 1

�
XKε � H

�
¤ η � f plnq,

where 0 ¤ f plnq ¤ 1 and
¸
ln

f plnq � 1, and Htn is the interaction history.

Property 2 (finite sample complexity)

Dtn ¥ 1,@η P p0, 1q,@ε P p0, 1s,P
�
tKnpLq � Kεu|Htn

�
¥ 1� η.
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Decentralized Elimination Algorithm

Analysis of Decentralized Elimination: privacy

Theorem 1

Using any ArmSelection subroutine, DECENTRALIZED ELIMINATION is an pε, ηq-private

algorithm, that finds an ε-optimal arm with a failure probability δ ¤ η
t log δ
log η

u and that
exchanges at most t log δ

log η
uK � 1 messages.

Comment 1

Theorem 1 provides the number of players needed to find an ε-optimal arm with high
probability while insuring privacy: M � t log δ

log η
u.

Comment 2

The communication cost depends only on the problem parameters: the privacy
constraint η, the probability of failure δ, the number of actions, and notably not on the
number of samples.
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Decentralized Elimination Algorithm

Analysis of Decentralized Elimination: sample complexity

Let TPy be the number of samples in Py needed by the ArmSelection subroutine to find
an ε-optimal arm with high probability.

Theorem 2

Using any ArmSelection subroutine, with a probability of failure a little bit higher than
η
t log δ
log η

u DECENTRALIZED ELIMINATION stops after:

O

�
1

p�

�
TPy �

c
1
2
log

1
δ

��
samples in Px,y,

where p� � minnPNM Pxpx � nq be the probability of the least frequent voting player.

Theorem 2 states that the penalty coming from the privacy and the communication cost
constraints is mainly depending on the probability of the least frequent voting player.
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Decentralized Elimination Algorithm

Analysis of Decentralized Elimination: illustration

We consider the case where the distribution of players is uniform, and where a optimal
arm selection subroutine is used. With a failure probability at most δ � ηN the number
of sample in Px,y needed by DECENTRALIZED ELIMINATION to find an ε-optimal arm is:

O

�
K
ε2 log

1
δ
� N

c
1
2
log

1
δ

�
samples in Px,y.

In comparison to a optimal centralized algorithm, which communicates all the
messages and does not provide privacy protection guarantee, in the case of uniform
distribution of players, the sample complexity of DECENTRALIZED ELIMINATION suffers
from a penalty that is linear with respect to the number of players.
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Experiments

Experiments: setting

Problem 1: Uniform distribution of players. 10 arms. The optimal arm has a mean
reward µ1 � 0.7, the second one µ2 � 0.5, the third one µ3 � 0.3, and the others
have a mean reward of 0.1.

Problem 2: 50% of players generates 80% of events. Same arms.

Baselines

1-privacy: an pε, 1q-private algorithm that does not share any information between
the players.

0-privacy: an pε, 0q-private algorithm that shares all the information between
players.

Arm Elimination subroutines

SER3 (Successive Elimination with Randomized Round Robin) is based on
uniform sampling and successive eliminations of suboptimal arms.

UGapEc uses adaptive sampling and a stopping rule to output the best arm.
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Experiments

Experiments

Uniform distribution of players - Sample
Complexity

50% of players generates 80% of events -
Sample Complexity

The performances of 1-PRIVACY baselines are horrendous in both problems. Worse,
when the distribution of players moves away from the uniformity, the performances of
1-PRIVACY baselines decrease.
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Experiments

Experiments

Uniform distribution of players - Sample
Complexity

50% of players generates 80% of events -
Sample Complexity

1-privacy-UGAPEC outperforms 1-privacy-SER3, while DECENTRALIZED SER3
outperforms DECENTRALIZED UGAPEC: Successive Elimination algorithms are better
suited for DECENTRALIZED ELIMINATION than Explore Then Commit algorithms.
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Experiments

Experiments

Uniform distribution of players - Sample
Complexity

50% of players generates 80% of events -
Sample Complexity

The linear dependency of the sample complexity of DECENTRALIZED ELIMINATION with
respect to the number of players is due to the fact that in the considered problems, the
probability of the least frequent voting player p�decreases in Op1{Nq.
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Conclusion

Centralized versus Decentralized Exploration

Benefits of decentralized exploration:

Privacy, by using an pε, ηq-private algorithm,
Dramatic reduction of the communication cost, which is a strict requirement for Internet
Of Things,
Increasing responsiveness of mobile phone applications, by vanishing the interactions
with a central server,
Scalability, thanks to parallel processing.

Cost of decentralized exploration:

higher sample complexity, due to the privacy and the communication cost constraints.

The decentralized exploration allows a good balance between conflicting interests: the
service provider performs sequential A/B testing, while saving resources and protecting
privacy of users.
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Conclusion

Conclusion

Main contributions:

the decentralized exploration problem, where players collaborate to find an
ε-optimal arm,

a privacy definition for decentralized exploration, based on the quality of
information an adversary could infer from the messages of each player,

a generic algorithm for decentralized exploration, Decentralized Elimination, which
ensures privacy and low communication cost, while controlling the sample
complexity,

experiments which suggest that the successive elimination algorithms are better
suited for Decentralized Elimination.

Bonus

Thanks to the generality of the approach, we have extended it to the case of
non-stationary bandits (in the paper).
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