# Gibbs Sampling from $k$-Determinantal Point Processes 

Alireza Rezaei

University of Washington

Based on joint work with
Shayan Oveis Gharan

Point Process: A distribution on subsets of $[N]=\{1,2, \ldots, N\}$. Determinantal Point Process: There is a PSD kernel $L \in \mathbb{R}^{N \times N}$ such that

$$
\forall S \subseteq[N]: \mathbb{P}[S] \propto \operatorname{det}\left(L_{S}\right)
$$

Point Process: A distribution on subsets of $[N]=\{1,2, \ldots, N\}$. Determinantal Point Process: There is a PSD kernel $L \in \mathbb{R}^{N \times N}$ such that

$$
\forall S \subseteq[N]: \mathbb{P}[S] \propto \operatorname{det}\left(L_{S}\right)
$$

$\boldsymbol{k}$-DPP: Conditioning of a DPP on picking subsets of size $k$

Focus of the talk: Sampling from $k$ DPPs

$$
\text { if }|S|=k: \mathbb{P}[S] \propto \operatorname{det}\left(L_{S}\right)
$$

$$
\text { otherwise : } \mathbb{P}[S]=0
$$

Point Process: A distribution on subsets of $[N]=\{1,2, \ldots, N\}$.
Determinantal Point Process: There is a PSD kernel $L \in \mathbb{R}^{N \times N}$ such that

$$
\forall S \subseteq[N]: \mathbb{P}[S] \propto \operatorname{det}\left(L_{S}\right)
$$

$\boldsymbol{k}$-DPP: Conditioning of a DPP on picking subsets of size $k$

> Focus of the talk: Sampling from $k$ DPPs if $|S|=k: \mathbb{P}[S] \propto \operatorname{det}\left(L_{S}\right)$ otherwise : $\mathbb{P}[S]=0$


DPPs are Very popular probabilistic models in machine learning to capture diversity.
Applications [Kulesza-Taskar'11, Dang’05, Nenkova-Vanderwende-McKeown'06, Mirzasoleiman-Jegelka-Krause'17]

- Image search, document and video summarization, tweet timeline generation, pose estimation, feature selection


## Continuous Domain

Input: PSD operator $L: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ and $k$
select a subset $S \subset \mathcal{C}$ with $k$ points from a distribution with PDF function


$$
p(S) \propto \operatorname{det}\left(\{L(x, y)\}_{x, y \in S}\right)
$$

## Continuous Domain

Input: PSD operator $L: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ and $k$
select a subset $S \subset \mathcal{C}$ with $k$ points from a distribution with PDF function

$$
p(S) \propto \operatorname{det}\left(\{L(x, y)\}_{x, y \in S}\right)
$$



Ex. Gaussian : $L(x, y)=\exp \left(-\frac{(x-y) \Sigma^{-1}(x-y)}{2}\right)$

## Applications.

- Hyper-parameter tuning [Dodge-Jamieson-Smith'17]
- Learning mixture of Gaussians[Affandi-Fox-Taskar'13]


## Random Scan Gibbs Sampler for $K$-DPP

1. Stay at the current state $S=\left\{x_{1}, \ldots x_{k}\right\}$ with prob $\frac{1}{2}$.
2. Choose $x_{i} \in S$ u.a.r
3. Choose $y \notin S$ from the conditional dist $\pi\left(. \mid S-x_{i}\right.$ is chosen)

Continuous: $\left.\operatorname{PDF}(y) \propto \pi\left(x_{1}, \ldots x_{i-1}, y, x_{i+1}, \ldots, x_{k}\right)\right)$


## Main Result

Given a $k$-DPP $\pi$, an "approximate" sample from $\pi$ can be generated by running the Gibbs sampler for $\boldsymbol{\tau}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{4}\right) \cdot \log \left(\operatorname{var}_{\pi}\left(\frac{\boldsymbol{p}_{\mu}}{\boldsymbol{p}_{\pi}}\right)\right)$ steps where $\mu$ is the starting dist.

## Main Result

Given a $k$-DPP $\pi$, an "approximate" sample from $\pi$ can be generated by running the Gibbs sampler for $\boldsymbol{\tau}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{4}\right) \cdot \mathbf{l o g}\left(\boldsymbol{\operatorname { v a r }}_{\boldsymbol{\pi}}\left(\frac{\boldsymbol{p}_{\mu}}{\boldsymbol{p}_{\boldsymbol{\pi}}}\right)\right)$ steps where $\mu$ is the starting dist.

Discrete: A simple greedy initialization gives $\tau=O\left(k^{5} \log k\right)$. Total running time is $O(N)$. poly $(k)$.
> Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R'16]
$>$ Mixing time is independent of $N$, so the running time in distributed settings is sublinear.

## Main Result

Given a $k$-DPP $\pi$, an "approximate" sample from $\pi$ can be generated by running the Gibbs sampler for $\boldsymbol{\tau}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{4}\right) \cdot \mathbf{l o g}\left(\boldsymbol{\operatorname { v a r }}_{\boldsymbol{\pi}}\left(\frac{\boldsymbol{p}_{\mu}}{\boldsymbol{p}_{\boldsymbol{\pi}}}\right)\right)$ steps where $\mu$ is the starting dist.

Discrete: A simple greedy initialization gives $\tau=O\left(k^{5} \log k\right)$. Total running time is $O(N)$. poly $(k)$.
$>$ Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R'16]
$>$ Mixing timn in indonendent of $N$, so the running time in distributed settings is sublinear. Being able to run the chain.

Continuous: Given access to conditional oracles, $\mu$ can be found so $\tau=O\left(k^{5} \log k\right)$.
$>$ First algorithm with a theoretical guarantee for sampling from continuous $k$-DPP.

## Main Result

Given a $k$-DPP $\pi$, an "approximate" sample from $\pi$ can be generated by running the Gibbs sampler for $\boldsymbol{\tau}=\widetilde{\boldsymbol{O}}\left(\boldsymbol{k}^{4}\right) \cdot \log \left(\operatorname{var}_{\pi}\left(\frac{p_{\mu}}{p_{\pi}}\right)\right)$ steps where $\mu$ is the starting dist.

Discrete: A simple greedy initialization gives $\tau=O\left(k^{5} \log k\right)$. Total running time is $O(N)$. poly $(k)$.
$>$ Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R'16]
$>$ Mixing timn in indenendent of $N$, so the running time in distributed settings is sublinear.
Being able to run the chain.

Continuous: Given access to conditional oracles, $\mu$ can be found so $\tau=O\left(k^{5} \log k\right)$.
$>$ First algorithm with a theoretical guarantee for sampling from continuous $k$-DPP.
$>$ Using a rejection sampler as the conditional oracles for Gaussian kernels $L(x, y)=\exp \left(-\frac{\|x-y\|^{2}}{\sigma^{2}}\right)$ defined a unit sphere in $\mathbb{R}^{d}$, the total running time is

- If $k=\operatorname{poly}(\mathrm{d}): \operatorname{poly}(d, \sigma)$
- If $k \leq e^{d^{1-\delta}}$ and $\sigma=O(1): \operatorname{poly}(d) \cdot k^{O\left(\frac{1}{\delta}\right)}$


## Thank you! <br> Poster: Pacific Ballroom M204

