Gibbs Sampling from *k*-Determinantal Point Processes

Alireza Rezaei

University of Washington

Based on joint work with Shayan Oveis Gharan **Point Process:** A distribution on subsets of $[N] = \{1, 2, ..., N\}$. **Determinantal Point Process:** There is a PSD kernel $L \in \mathbb{R}^{N \times N}$ such that

 $\forall S \subseteq [N]: \mathbb{P}[S] \propto \det(L_S)$

Point Process: A distribution on subsets of $[N] = \{1, 2, ..., N\}$. **Determinantal Point Process:** There is a PSD kernel $L \in \mathbb{R}^{N \times N}$ such that

 $\forall S \subseteq [N]: \mathbb{P}[S] \propto \det(L_S)$

*k***-DPP:** Conditioning of a DPP on picking subsets of size *k*

Focus of the talk: Sampling from *k*-DPPs if |S| = k: $\mathbb{P}[S] \propto \det(L_S)$

otherwise : $\mathbb{P}[S] = 0$

Point Process: A distribution on subsets of $[N] = \{1, 2, ..., N\}$. **Determinantal Point Process:** There is a PSD kernel $L \in \mathbb{R}^{N \times N}$ such that

 $\forall S \subseteq [N]: \mathbb{P}[S] \propto \det(L_S)$

*k***-DPP:** Conditioning of a DPP on picking subsets of size *k*

Focus of the talk: Sampling from k-DPPs if |S| = k: $\mathbb{P}[S] \propto \det(L_S)$ otherwise : $\mathbb{P}[S] = 0$

DPPs are Very popular probabilistic models in machine learning to capture diversity.

Applications [Kulesza-Taskar'11, Dang'05, Nenkova-Vanderwende-McKeown'06, Mirzasoleiman-Jegelka-Krause'17]

 Image search, document and video summarization, tweet timeline generation, pose estimation, feature selection

Continuous Domain

Input: PSD operator $L: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ and k

select a subset $S \subset C$ with k points from a distribution with PDF function

 $p(S) \propto \det(\{L(x, y)\}_{x, y \in S})$

Continuous Domain

Input: PSD operator $L: \mathcal{C} \times \mathcal{C} \rightarrow \mathbb{R}$ and k

select a subset $S \subset C$ with k points from a distribution with PDF function

 $p(S) \propto \det(\{L(x, y)\}_{x, y \in S})$

Ex. Gaussian :
$$L(x, y) = \exp\left(-\frac{(x-y)\Sigma^{-1}(x-y)}{2}\right)$$

Applications.

- Hyper-parameter tuning [Dodge-Jamieson-Smith'17]
- Learning mixture of Gaussians[Affandi-Fox-Taskar'13]

Random Scan Gibbs Sampler for K-DPP

- 1. Stay at the current state $S = \{x_1, \dots, x_k\}$ with prob $\frac{1}{2}$.
- 2. Choose $x_i \in S$ u.a.r
- 3. Choose $y \notin S$ from the conditional dist $\pi(.|S x_i|$ is chosen)

Continuous: $PDF(y) \propto \pi(x_1, \dots, x_{i-1}, y, x_{i+1}, \dots, x_k))$

Given a k-DPP π , an "approximate" sample from π can be generated by running the Gibbs sampler for $\tau = \tilde{O}(k^4) \cdot \log(\operatorname{var}_{\pi}\left(\frac{p_{\mu}}{p_{\pi}}\right))$ steps where μ is the starting dist.

Given a k-DPP π , an "approximate" sample from π can be generated by running the Gibbs sampler for $\tau = \tilde{O}(k^4) \cdot \log(\operatorname{var}_{\pi}\left(\frac{p_{\mu}}{p_{\pi}}\right))$ steps where μ is the starting dist.

Discrete: A simple greedy initialization gives $\tau = O(k^5 \log k)$. Total running time is O(N). poly(k).

- > Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R'16]
- \succ Mixing time is independent of N, so the running time in distributed settings is sublinear.

Given a k-DPP π , an "approximate" sample from π can be generated by running the Gibbs sampler for $\tau = \tilde{O}(k^4) \cdot \log(\operatorname{var}_{\pi}\left(\frac{p_{\mu}}{p_{\pi}}\right))$ steps where μ is the starting dist.

Discrete: A simple greedy initialization gives $\tau = O(k^5 \log k)$. Total running time is O(N). poly(k).

> Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R'16]

Mixing time is independent of N, so the running time in distributed settings is sublinear.
Being able to
run the chain.

Continuous: Given access to conditional oracles, μ can be found so $\tau = O(k^5 \log k)$.

 \succ First algorithm with a theoretical guarantee for sampling from continuous k-DPP.

Given a k-DPP π , an "approximate" sample from π can be generated by running the Gibbs sampler for $\tau = \tilde{O}(k^4) \cdot \log(\operatorname{var}_{\pi}\left(\frac{p_{\mu}}{p_{\pi}}\right))$ steps where μ is the starting dist.

Discrete: A simple greedy initialization gives $\tau = O(k^5 \log k)$. Total running time is O(N). poly(k).

> Does not improve upon the previous MCMC methods. [Anari-Oveis Gharan-R'16]

Mixing time is independent of N, so the running time in distributed settings is sublinear.
Being able to
run the chain.

Continuous: Given access to conditional oracles, μ can be found so $\tau = O(k^5 \log k)$.

- \succ First algorithm with a theoretical guarantee for sampling from continuous k-DPP.
- → Using a rejection sampler as the conditional oracles for Gaussian kernels $L(x, y) = \exp(-\frac{||x-y||^2}{\sigma^2})$ defined a unit sphere in \mathbb{R}^d , the total running time is
 - If $k = poly(d): poly(d, \sigma)$
 - If $k \le e^{d^{1-\delta}}$ and $\sigma = O(1)$: $\operatorname{poly}(d) \cdot k^{O(\frac{1}{\delta})}$

Thank you! Poster: Pacific Ballroom #204