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State space models

We would like to model the distribution of an observed sequence

y1:T = (y1, . . . , yT ).

• In the state space framework, the Yt are drawn from an observation

density g(yt|xt, θ).
• Xt is an unobserved Markov process with initial density µ(x1|θ) and
transition density f(xt|xt−1, θ).

This talk will focus on inferring the realized values of the Markov process

x1:T = (x1, . . . , xT ), assuming that θ is known.



State space models

State space models are a very widely used class of models. Some examples

where state space models have been successfully applied are

• Stochastic volatility models, e.g. Guarniero, Lee and Johansen (2016).

• Population dynamics models, e.g. Finke et al (2017).

• Partially observed queueing systems, Shestopaloff and Neal (2013).

• Oceanography, e.g. modelling variations in global sea levels, Markos

et al (2015).

• Computational neuroscience, e.g. decoding neural spike train data

(Paninski et al (2010)).



Bayesian inference for state space models

In a Bayesian approach, we infer x1:T by sampling from the posterior

density of x1:T given y1:T ,

p(x1:T |y1:T ) ∝ µ(x1)g(yt|xt)
T∏
t=2

f(xt|xt−1)g(yt|xt).

This sampling problem has no exact solution, except for linear Gaussian

models or models with a finite state space.

• In these cases, we can use the Kalman filter or the forward-backward

algorithm to compute posterior marginals.

For general, i.e. non-linear, non-Gaussian cases, approximate methods

such as Markov Chain Monte Carlo (MCMC) must be used.



MCMC with replicas of state

Running a Markov chain on multiple copies of a space has previously been

used to improve MCMC, e.g. parallel tempering, also see Leimkuhler et al

(2018).

Sharing information between different replicas can improve exploration of

the space.

For our scenario, the replica target is a product density over K copies of

the latent space, for some K > 2,

π̄
(
x
(1)
1:T , ...., x

(K)
1:T

)
=

K∏
k=1

p
(
x
(k)
1:T |y1:T

)
.

We can draw samples from π̄ by updating each replica in turn.

• This is computationally more expensive but can be beneficial in

practice.



The replica cSMC sampler

Consider updating replica k, with the other replicas fixed.

Key idea: For each replica x
(k)
1:T , use

x
(−k)
t+1 = (x

(1)
t+1, . . . , x

(k−1)
t+1 , x

(k+1)
t+1 , . . . , x

(K)
t+1)

to construct an estimate of the backwards information filter

p̂(k)(yt+1:T |xt).
Then, use iterated cSMC with the sequence of targets

p̂(k) (x1:t|y1:T ) ∝ p (x1:t|y1:t−1) p̂
(k)(yt+1:T |xt)

to update replica x
(k)
1:T . The optimal proposal at t ≥ 2 now is

qoptt (xt|xt−1) ∝ g(yt|xt)f(xt|xt−1)p̂
(k) (yt+1:T |xt) .

• The full update consists of updating all replicas in turn.



Estimating the backward information filter

The replica cSMC sampler requires an estimator p̂(k) (yt+1:T |xt) of the
backward information filter based on x

(−k)
t+1 .

We propose to use a Monte Carlo approximation built using the other

replicas,

p̂(k) (yt+1:T |xt) ∝
∑
j �=k

f
(
x
(j)
t+1|xt

)

p
(
x
(j)
t+1|y1:t

) .

Here, p (xt+1|y1:t) denotes the predictive density of xt+1.

• In practice, the predictive is unknown, and we also need to

approximate it with some p̂(xt+1|y1:t).
• However, this turns out to be easier.



Approximating the predictive density

• If we have informative observations, the posterior will tend to be

much more concentrated than the predictive.

• We can approximate the predictive by its mean with respect to the

posterior density,

∫
f (xt+1|xt)
p (xt+1|y1:t)p (xt+1|y1:T ) dxt+1

≈
∫
f (xt+1|xt) p (xt+1|y1:T ) dxt+1∫
p (xt+1|y1:t) p (xt+1|y1:T ) dxt+1

≈
1
K

∑K
k=1 f

(
x
(k)
t+1|xt

)
1
K

∑K
k=1 p

(
x
(k)
t+1|y1:t

) .



Approximating the predictive density

Using a constant approximation can reduce the variance of the mixture

weights. Suppose the predictive is N (µ, σ2
0) and the posterior is N (0, σ2

1),

where σ2
1 < σ2

0. Then,

Var
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)
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where

ν1 =

(
1

2σ2
1

− 1

σ2
0

)
ν2 =

(
1

σ2
1

− 1

σ2
0

)
. (2)

• The weight variance can grow quickly with the difference of predictive

and posterior means.

• This can reduce the effective number of replicas used.



Examples - Latent Process

X1 ∼ N (0,Σb), Xt|{Xt−1 = x} ∼ N (Φx,Σ).

Here, Xt = (X1,t, . . . , Xd,t)
′, σ2

b,i = 1/(1− φ2
i ) and

Φ =




φ1 0 · · · 0

0 φ2
. . .

...
...
. . . φd−1 0

0 · · · 0 φd




, Σ =




1 ρ · · · ρ
ρ 1

. . .
...

...
. . . 1 ρ

ρ · · · ρ 1




,

Σb =




σ2
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ρσb,2σb,1 σ2
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. . .
...

...
. . . σ2

b,d−1 ρσb,d−1σb,d

ρσb,dσb,1 · · · ρσb,dσb,d−1 σ2
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.



Example 1: A Linear Gaussian Model

We use the latent autoregressive process as described previously.

The observation process is Yi,t|{Xi,t = xi,t} ∼ N (xi,t, 1) for i = 1, . . . , d,

t = 1, . . . , T .

We set T = 250, d = 5 and the model’s parameters to ρ = 0.7 and φi = 0.9

for i = 1, . . . , d.



Example 1. A Linear Gaussian Model

We use this model to investigate the effects of the following.

1. Increasing the number of replicas K.

2. Using a constant approximation to the predictive density, since it can

be computed exactly.
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(a) 2 replicas.

0 50 100 150 200 250
Time (t)

0

2

4

6

8

10

12

14

16

18

A
ut

oc
or

re
la

tio
n 

tim
e

(b) 75 replicas.
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(c) 75 replicas, constant pre-

dictive.

Figure 1: Estimated autocorrelation times for each latent variable. Different

coloured lines correspond to different latent state components.



Example 2. Two Benchmark Models

We use the same autoregressive latent process as earlier.

Model 1: T = 250, d = 10 and Yi,t|{Xi,t = xi,t} ∼ Poisson(exp(c+ σxi,t))

where c = −0.4 and σ = 0.6.

Model 2: T = 500, d = 15 and Yi,t|{Xi,t = xi,t} ∼ Poisson(σ|xi,t|)) where
σ = 0.8.
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(a) Data for Model 1, i = 1.
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(b) Data for Model 2, i = 1.

Figure 2: Simulated data from the Poisson-Gaussian models.



Example 2. Two Benchmark Models

• For model 1, we use replica cSMC with two replicas, and update one

replica conditional on the other.

• We compare to the best method in Shestopaloff and Neal (2018).
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(a) Iterated cSMC with

Metropolis.
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(b) Replica cSMC.

Figure 3: Model 1. Estimated autocorrelation times for each latent vari-

able, adjusted for computation time. Different coloured lines corresponds

to different latent state components.



Example 2. Two Benchmark Models

• For this model, the challenge is to move between the many different

modes of the latent state.

• We use a total of 15 replicas and update 14 of the 15 replicas with

iterated cSMC and one replica with replica cSMC.
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(a) Trace plot for x1,300.
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(b) Trace plot for x3,208x4,208.

Figure 4: Model 2. Replica + ordinary iterated cSMC.

Good performance relies on replicas being well-distributed.



Future Work

• Are the other ways to use to estimate the predictive density, i.e.

improvement on using a constant, without resulting in mixture

weights with high variance?

• How do we improve the estimate of the backward information filter in

the multimodal case?

• How do we choose the number of replicas? Better guidance needed for

this.

• Can we apply these methods to scenarios that have a sequential

structure but do not involve time series?


