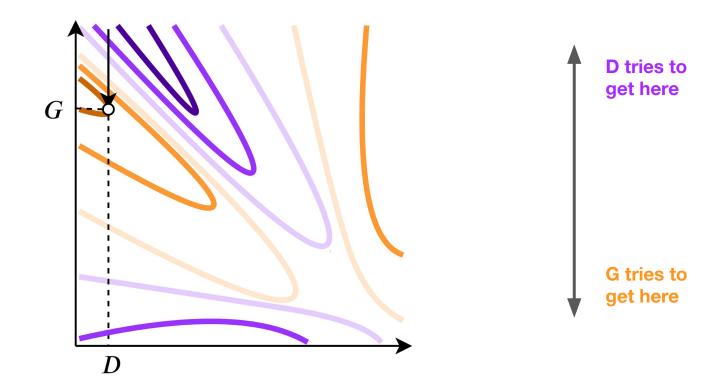
Metropolis-Hastings Generative Adversarial Networks

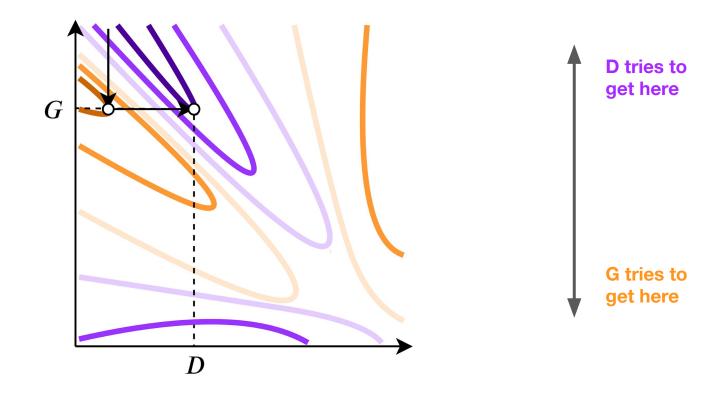
Ryan Turner, Jane Hung, Eric Frank, Yunus Saatci, Jason Yosinski

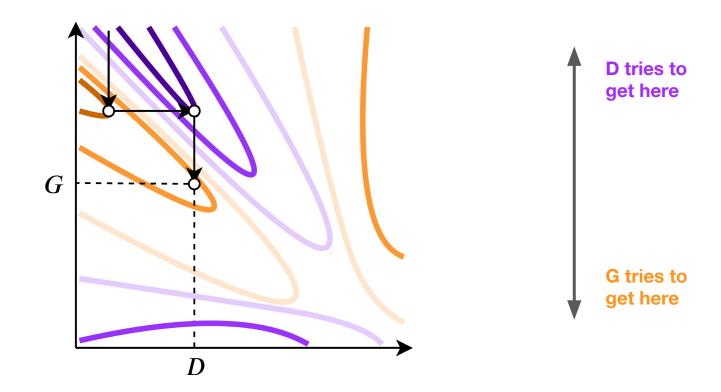
Poster #201

Uber Al

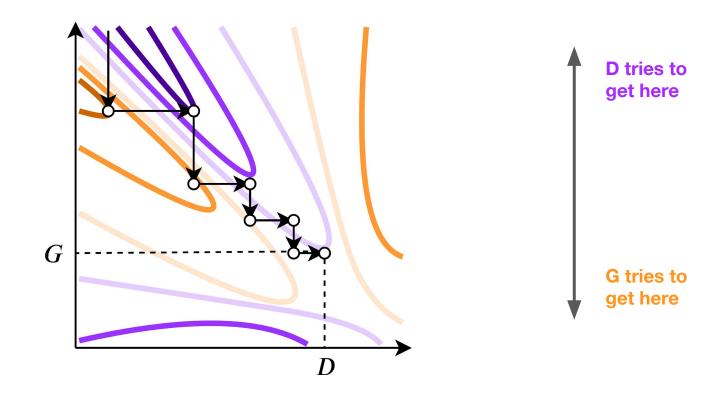
G tries to get here



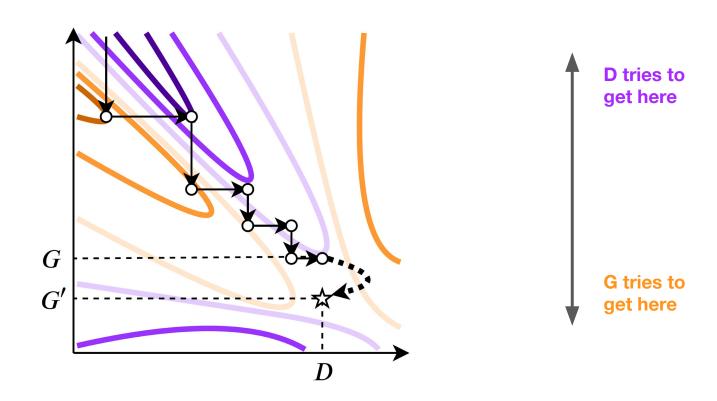




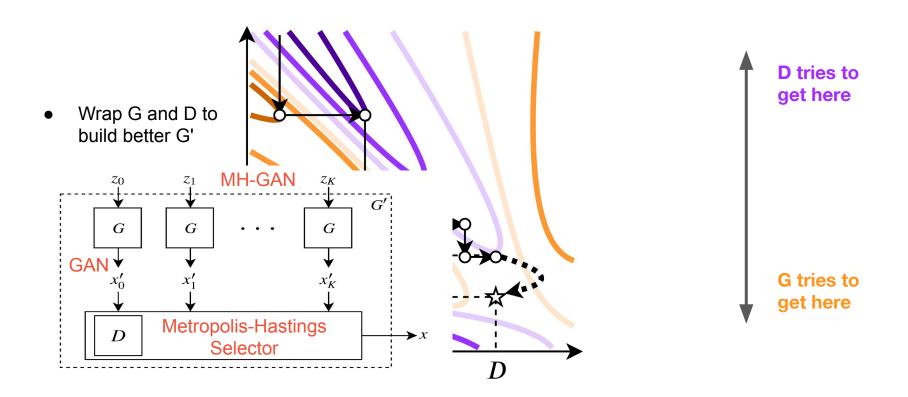
Typical GAN training ... gets stuck

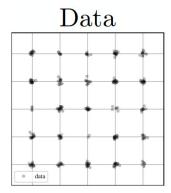


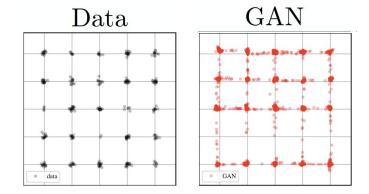
MH-GAN helps you reach the star

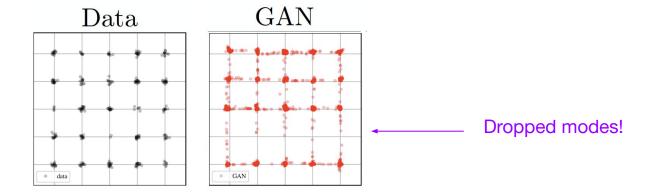


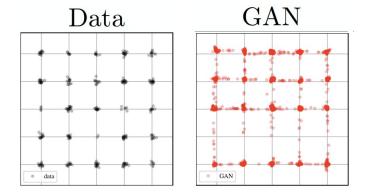
MH-GAN helps you reach the star

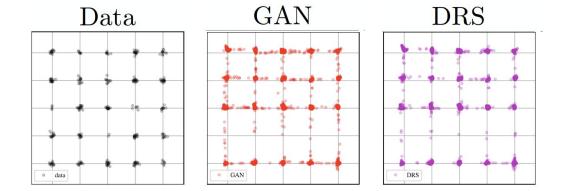


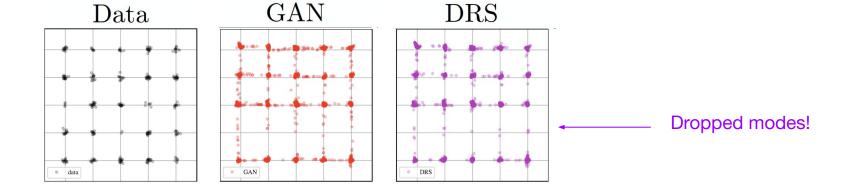


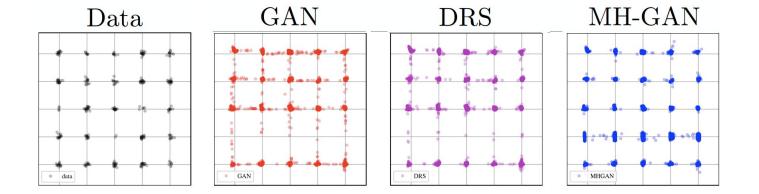






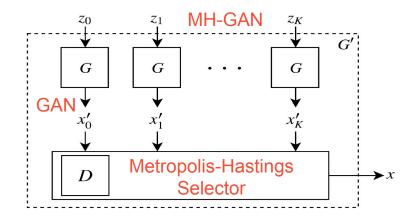






Motivation for Metropolis-Hastings

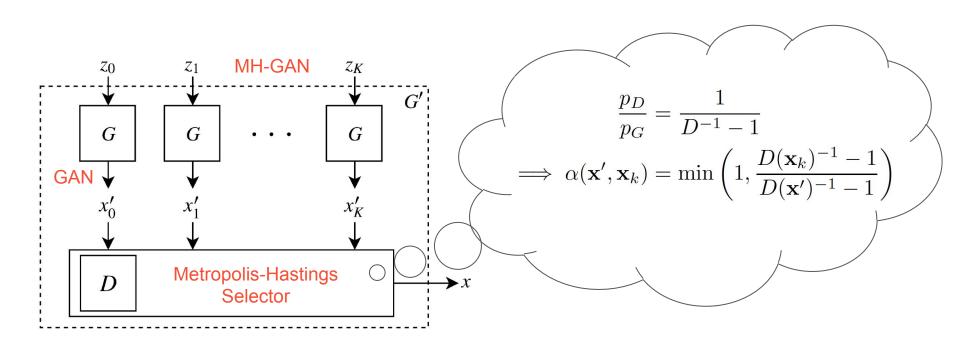
- Use MCMC *independence sampler*: sample p_n from G
- Given a perfect D and imperfect G, still obtain exact samples from true data distribution!
- Avoid densities in MCMC, just need density ratios:



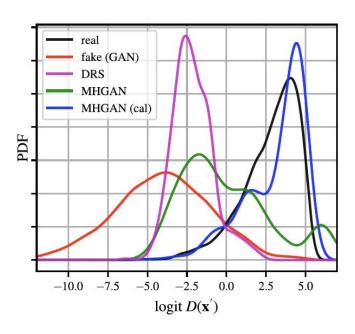
$$D(\mathbf{x}) = \frac{p_D(\mathbf{x})}{p_D(\mathbf{x}) + p_G(\mathbf{x})}$$

$$\frac{p_D(\mathbf{x})}{p_G(\mathbf{x})} = \frac{D(\mathbf{x})}{1 - D(\mathbf{x})}$$

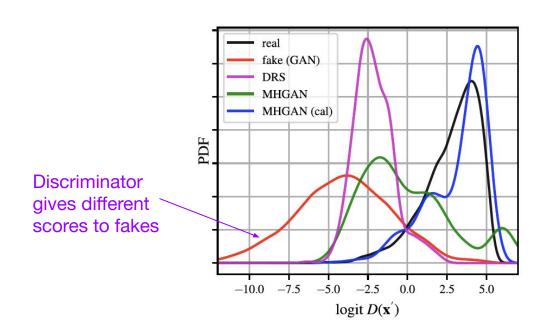
Metropolis-Hastings as a post-processing step for generators



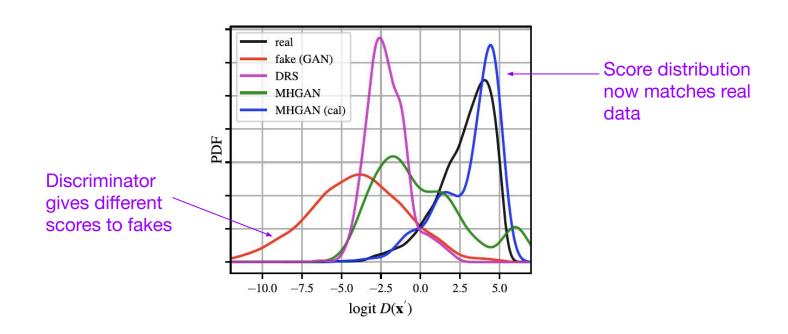
MH recovers the correct score distribution



MH recovers the correct score distribution



MH recovers the correct score distribution



Also... sample images

Progressive GAN (base)

Progressive GAN (base)

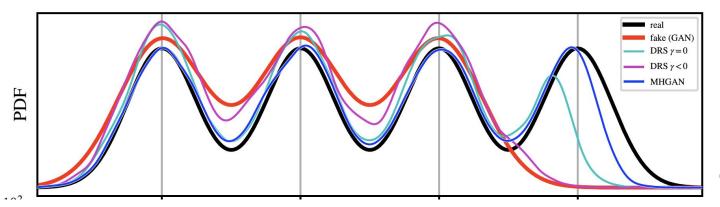
Progressive GAN PGAN + DRS (base) (calibrated)

Progressive GAN PGAN + DRS PGAN + MH-GAN (base) (calibrated) (calibrated)

Metropolis-Hastings GAN

Ryan Turner, Jane Hung, Eric Frank, Yunus Saatci, Jason Yosinski

Poster #201



1) 1D mixture of 4 Gaussians, missing one mixture