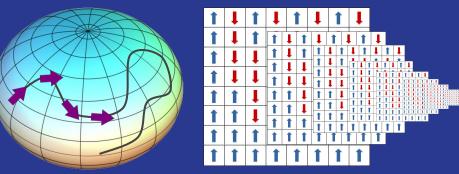
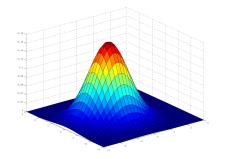
# Alan Turing Institute Unifying Orthogonal Monte Carlo Methods

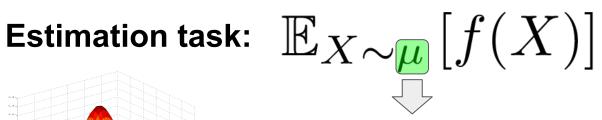
From Kac's Random Walks To Hadamard Multi Rademachers



Krzysztof Choromanski, Mark Rowland Wenyu Chen, Adrian Weller

### **The Phenomenon of Orthogonal Monte Carlo Estimators**

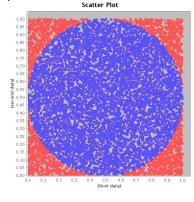




isotropic distribution (e.g. Gaussian)

## **Applications:**

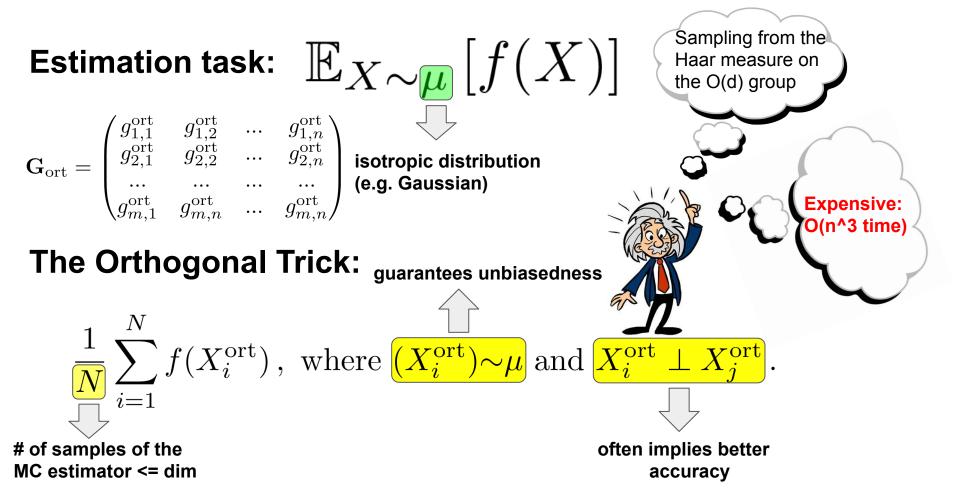
- dimensionality reduction (JLT-mechanisms)
- scaling kernel methods (random feature maps)
- hashing algorithms (e.g. LSH)
- (sliced) Wasserstein distances (WGANs, autoencoders...)
- reinforcement learning (ES algorithms)
- and many, many more...



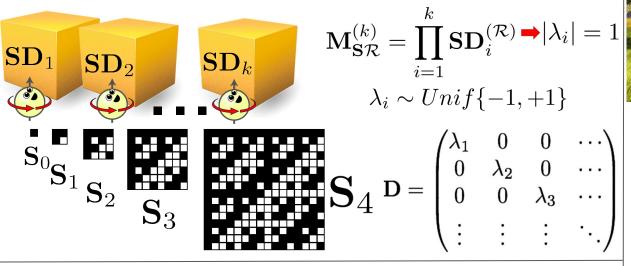
### **Standard MC approach:**

$$\frac{1}{N}\sum_{i=1}^{N} f(X_i), \text{ where } (X_i)_{i=1}^{N} \stackrel{\text{i.i.d.}}{\sim} \mu.$$

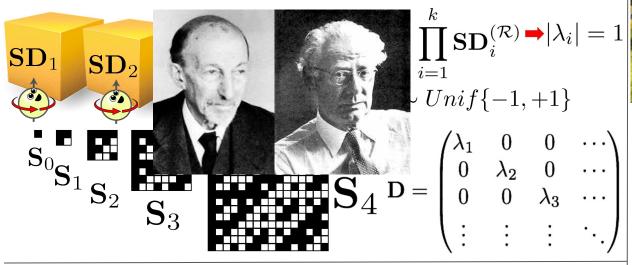
### **The Phenomenon of Orthogonal Monte Carlo Estimators**



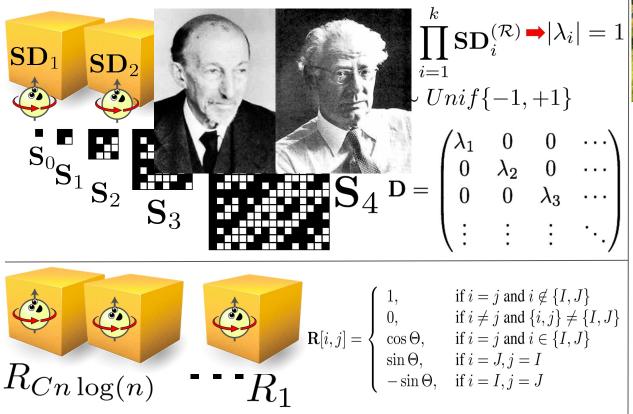








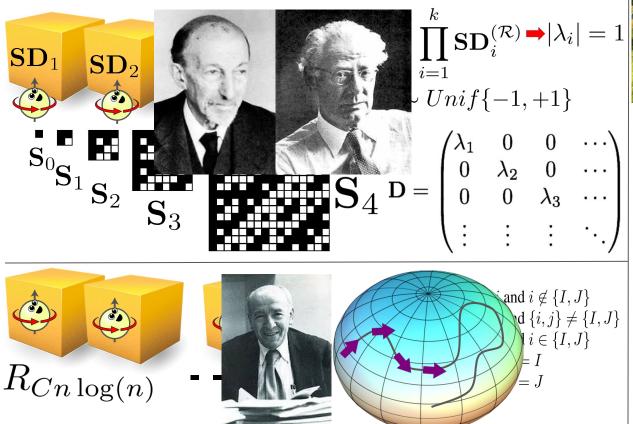






$$\begin{split} \mathbf{SD}_{1} & \mathbf{SD}_{2} \\ \mathbf{SD}_{1} & \mathbf{SD}_{2} \\ \mathbf{S}_{0} \\ \mathbf{S}_{1} \\ \mathbf{S}_{2} \\ \mathbf{S}_{3} \\ \mathbf{S}_{3} \\ \mathbf{S}_{4} \\ \mathbf{S}_{4} \\ \mathbf{S}_{4} \\ \mathbf{D} = \begin{pmatrix} \lambda_{1} & 0 & 0 & \cdots \\ 0 & \lambda_{2} & 0 & \cdots \\ 0 & 0 & \lambda_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ \mathbf{S}_{4} \\ \mathbf{S}_{4} \\ \mathbf{D} = \begin{pmatrix} \lambda_{1} & 0 & 0 & \cdots \\ 0 & \lambda_{2} & 0 & \cdots \\ 0 & 0 & \lambda_{3} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \\ \mathbf{S}_{6} \\ \mathbf{S}_{7} \\ \mathbf{S}$$







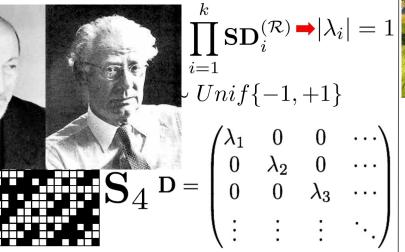
 $\mathbf{SD}_1$ 

 $\mathbf{S}_{0}\mathbf{S}_{1}\mathbf{S}_{2}$ 

 $R_{Cn\log(n)}$ 

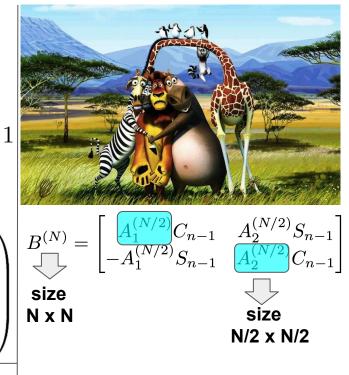
 $\mathbf{SD}_2$ 

 $\mathbf{S}_3$ 



and  $i \notin \{I, J\}$ 

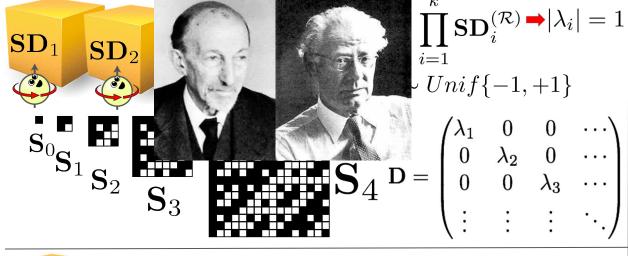
 $\begin{array}{c} \mathsf{d}\left\{i,j\right\} \neq \left\{I,J\right\} \\ i \in \left\{I,J\right\} \end{array}$ 

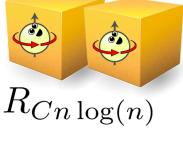


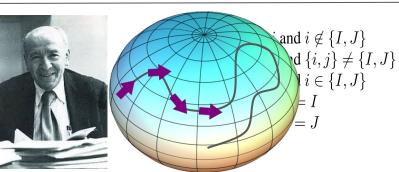
 $N = 2^n$ 

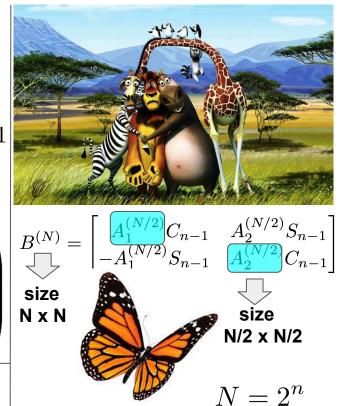
#### **Constraints:**

• 
$$C_{n-1}^2 + S_{n-1}^2 = I$$
  
•  $C_{n-1}S_{n-1} = S_{n-1}C_{n-1}$ 



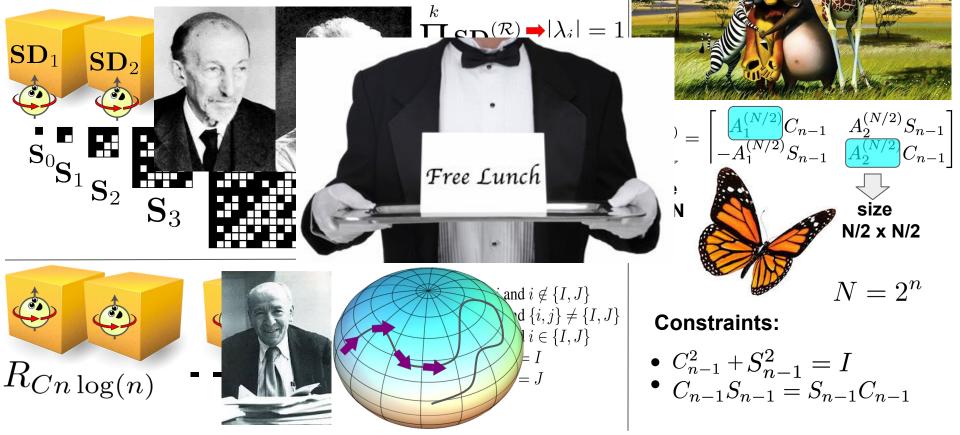






**Constraints:** 

• 
$$C_{n-1}^2 + S_{n-1}^2 = I$$
  
•  $C_{n-1}S_{n-1} = S_{n-1}C_{n-1}$ 



## **On the Hunt for the Unifying Theory:** The World of Givens Reflections and Rotations $\begin{array}{l} \textbf{Givens} \\ \textbf{rotations} \\ \textbf{G}[i,j,\theta]_{k,l} = \begin{cases} \cos(\theta) & \text{if } k = l \in \{i,j\} \\ -\sin(\theta) & \text{if } k = i, l = j \\ \sin(\theta) & \text{if } k = j, l = i \\ 1 & \text{if } k = l \not\in \{i,j\} \\ 0 & \text{otherwise} \,. \end{cases}$ Givens reflections $\widetilde{\mathbf{G}}[i, j, \theta]$ reflection in the jth coordinate $\theta_{\rm r}$ $\theta_{\rm i}$

Kac's random walk matrices

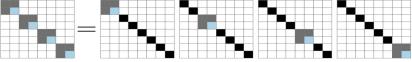
$$\mathbf{K}_T = \prod_{t=1}^T \mathbf{G}[I_t, J_t, \theta_t]$$

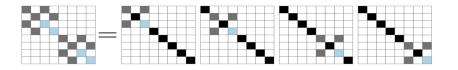
#### Hadamard-Rademacher Chains

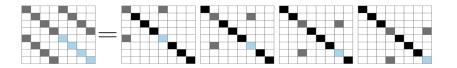
$$\mathbf{X}_T = \prod_{t=1}^T \mathbf{H} \mathbf{D}_t$$

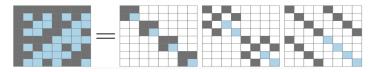


## On the Hunt for the Unifying Theory: The World of Givens Reflections and Rotations









 $\widetilde{\mathbf{F}}^{j,L} =$  $\widetilde{\mathbf{G}}[\boldsymbol{\lambda}, \boldsymbol{\lambda} + \mathbf{e}_j, \pi/4] \in \mathcal{O}(2^L)$  $\lambda \in \mathbb{F}_2^L, \lambda_i = 0$ 

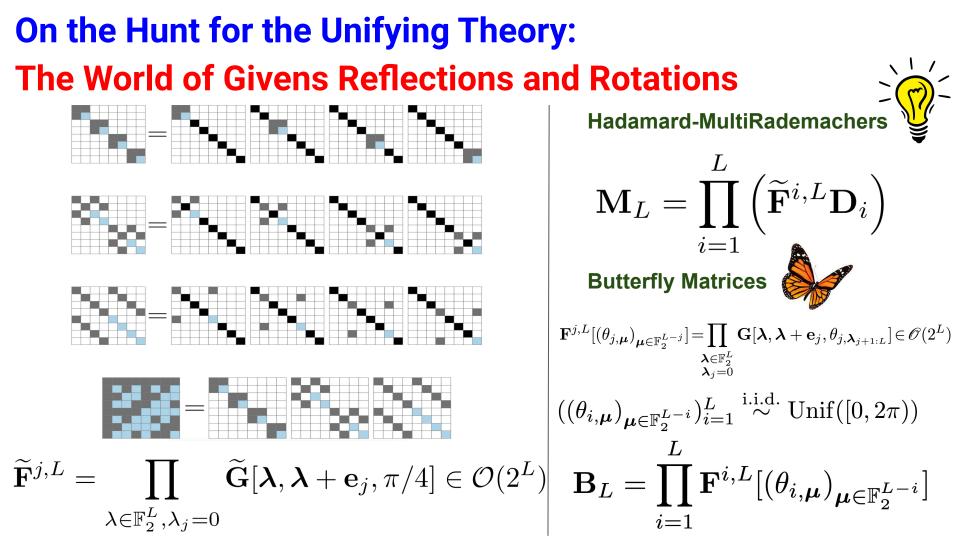
Kac's random walk matrices

$$\mathbf{K}_T = \prod_{t=1}^T \mathbf{G}[I_t, J_t, \theta_t]$$

#### Hadamard-Rademacher Chains

$$\mathbf{X}_T = \prod_{t=1}^T \mathbf{H} \mathbf{D}_t$$

$$\mathbf{H}\mathbf{D}_{t} = \left(\prod_{i=1}^{L-1} \widetilde{\mathbf{F}}^{i,L}\right) \left(\widetilde{\mathbf{F}}^{L,L}\mathbf{D}_{t}\right)$$



# **First Theoretical Results for Free-Lunch Phenomenon in the Nonlinear Regime**

**Theorem** (Kac's random walk estimators of RBF kernels). Let  $K_d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$  be the Gaussian kernel and let  $\epsilon > 0$ . Let  $\mathcal{B}$  be a set satisfying diam( $\mathcal{B}$ )  $\leq B$  for some universal constant B that does not depend on d ( $\mathcal{B}$  might be for instance a unit sphere). Then there exists a constant  $C = C(B, \epsilon) > 0$  such that for every  $\mathbf{x}, \mathbf{y} \in \mathcal{B} \setminus S(\epsilon)$  and dlarge enough we have:

$$\mathrm{MSE}(\widehat{K}_{\mathrm{kac}}^{\phi,m,k}(\mathbf{x},\mathbf{y})) < \mathrm{MSE}(\widehat{K}_{\mathrm{base}}^{\phi,m}(\mathbf{x},\mathbf{y})),$$

where  $k = C \cdot d \log d$  and m = ld for some  $l \in \mathbb{N}$ .

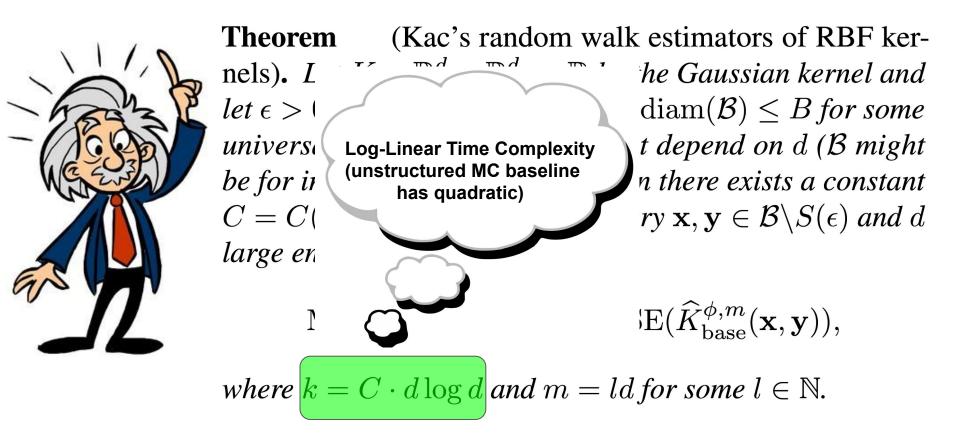
# **First Theoretical Results for Free-Lunch Phenomenon in the Nonlinear Regime**

Theorem (Kac's nels). Let  $K_d : \mathbb{R}^d \times$ Still more accurate estimator let  $\epsilon > 0$ . Let  $\mathcal{B}$  be a than unstructured MC baseline universal constant B be for instance a unit  $C = C(B,\epsilon) > 0$  suc large enough we have  $MSE(\widehat{K}_{kac}^{\phi,m,k}(\mathbf{x},\mathbf{y})) < MSE(\widehat{K}_{base}^{\phi,m}(\mathbf{x},\mathbf{y})),$ 

f RBF kerkernel and 3 for some l ( $\mathcal{B}$  might a constant  $S(\epsilon)$  and d

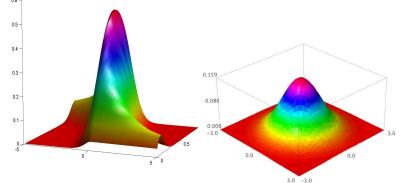
where  $k = C \cdot d \log d$  and m = ld for some  $l \in \mathbb{N}$ .

# **First Theoretical Results for Free-Lunch Phenomenon in the Nonlinear Regime**



# First Theoretical Results for Free-Lunch Phenomenon inthe Nonlinear RegimeAnalysis of the Total Variation Distance between





MSE( $\mathbf{Y}$ ) =  $\mathbb{E}[(Y - \mu)^2] = \int_0^\infty \mathbb{P}[|Y - \mu| > \sqrt{t}]dt$ estimator estimated value *Pillai, Smith 2016* Kac's random walk on d-sphere mixes in O(d log d) steps

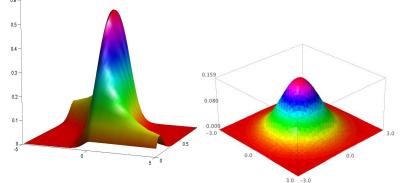
**Theorem** Fix  $C_1 < \frac{1}{2}$  and  $C_2 > 200$ . If the sequence of times  $\{T_1(n)\}_{n \in \mathbb{N}}$  satisfies  $T_1(n) < C_1 n \log(n)$  for all n, then

$$\lim_{n\to\infty}\inf_{X_0\in\mathbf{S}^{n-1}}\|\mathcal{L}(X_{T_1(n)})-\mu\|_{\mathrm{TV}}=1.$$

If the sequence of times  $\{T_2(n)\}_{n\in\mathbb{N}}$  satisfies  $T_2(n) > C_2 n \log(n)$  for all n, then  $\lim_{n\to\infty} \sup_{X_0\in \mathbf{S}^{n-1}} \|\mathcal{L}(X_{T_2(n)}) - \mu\|_{\mathrm{TV}} = 0.$ 

# First Theoretical Results for Free-Lunch Phenomenon in<br/>the Nonlinear RegimeAnalysis of the Total Variation Distance between

Analysis of the Total Variation Distance between Haar measure on d-sphere and measure induced by standard Kac's random walk on d-sphere



MSE  $(Y - \mu)^2 = \int_0^\infty \mathbb{P}[|Y - \mu| > \sqrt{t}]dt$ estimator estimated value *Pillai, Smith 2016* Kac's random walk on d-sphere mixes in O(d log d) steps

**Theorem** Fix  $C_1 < \frac{1}{2}$  and  $C_2 > 200$ . If the sequence of times  $\{T_1(n)\}_{n \in \mathbb{N}}$  satisfies  $T_1(n) < C_1 n \log(n)$  for all n, then

$$\lim_{n \to \infty} \inf_{X_0 \in \mathbf{S}^{n-1}} \| \mathcal{L}(X_{T_1(n)}) - \mu \|_{\mathrm{TV}} = 1.$$

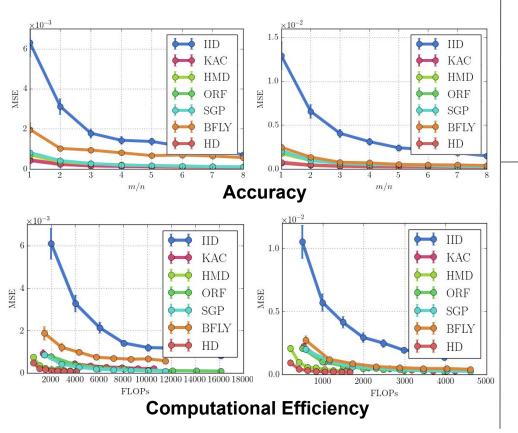
If the sequence of times  $\{T_2(n)\}_{n\in\mathbb{N}}$  satisfies  $T_2(n) > C_2 n \log(n)$  for all n, then

 $\lim_{n \to \infty} \sup_{X_0 \in S^{n-1}} \|\mathcal{L}(X_{T_2(n)}) - \mu\|_{\mathrm{TV}} = 0.$ 

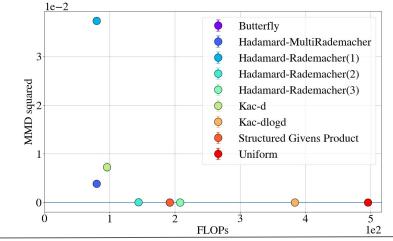
More careful analysis of the LHS

## How Does It Work In Practice ?

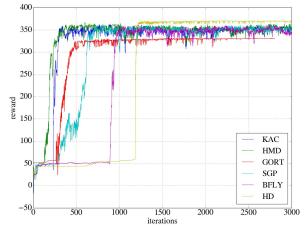
#### **Kernel Approximation via Random Features**



#### **Maximum Mean Discrepancy Experiment**

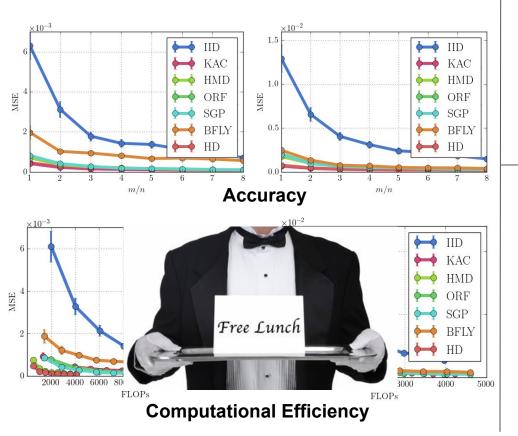


#### **Reinforcement Learning via ES-methods**

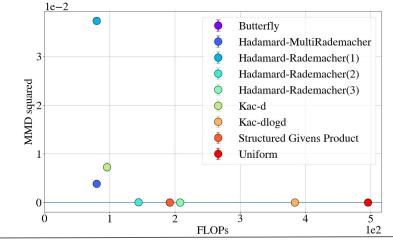


## How Does It Work In Practice ?

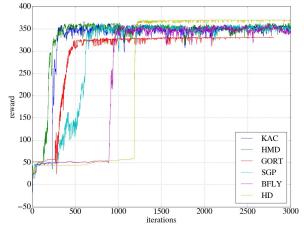
#### **Kernel Approximation via Random Features**

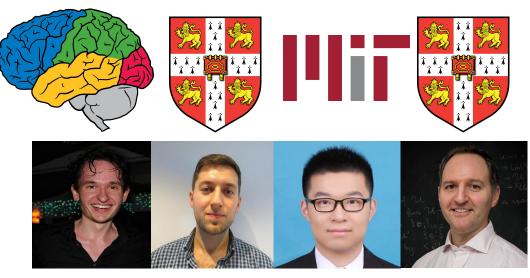


#### **Maximum Mean Discrepancy Experiment**



#### **Reinforcement Learning via ES-methods**





### The Alan Turing Institute

# Thank you for your attention !