Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design

Jonathan Ho*, Xi Chen*, Aravind Srinivas, Yan Duan, Pieter Abbeel

Overview

- Goal: likelihood-based model with
 - Fast sampling and training
 - Good samples and density estimation performance
- Our strategy: improve flow models
 - Uniform dequantization -> variational dequantization
 - Affine coupling -> mixture of logistics coupling
 - Convolutions -> convolutions + self-attention

Continuous flows for discrete data

- A problem arises when fitting continuous density models to discrete data: degeneracy
 - When the data are 3-bit pixel values, $\mathbf{x} \in \{0, 1, 2, \dots, 255\}$
 - What density does a model assign to values between bins like 0.4, 0.42...?
- Correct semantics: we want the integral of probability density within a discrete interval to approximate discrete probability mass

$$P_{\text{model}}(\mathbf{x}) \coloneqq \int_{[0,1)^D} p_{\text{model}}(\mathbf{x} + \mathbf{u}) \, d\mathbf{u}$$

Continuous flows for discrete data

- Solution: **Dequantization**. Add noise to data.
 - $\mathbf{x} \in \{0, 1, 2, \dots, 255\}$
 - We draw noise u uniformly from $[0,1)^D$

$$\begin{split} \mathbb{E}_{\mathbf{y} \sim p_{\text{data}}} \left[\log p_{\text{model}}(\mathbf{y}) \right] &= \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \int_{[0,1)^D} \log p_{\text{model}}(\mathbf{x} + \mathbf{u}) \, d\mathbf{u} \\ &\leq \sum_{\mathbf{x}} P_{\text{data}}(\mathbf{x}) \log \int_{[0,1)^D} p_{\text{model}}(\mathbf{x} + \mathbf{u}) \, d\mathbf{u} \\ &= \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\text{model}}(\mathbf{x}) \right] \end{split}$$

[Theis, Oord, Bethge, 2016]

Variational Dequantization

• Variational Dequantization. Add a learnable noise q to data.

$$\begin{split} \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log P_{\text{model}}(\mathbf{x}) \right] &= \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\log \int_{[0,1)^{D}} q(\mathbf{u}|\mathbf{x}) \frac{p_{\text{model}}(\mathbf{x}+\mathbf{u})}{q(\mathbf{u}|\mathbf{x})} \, d\mathbf{u} \right] \\ &\geq \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \left[\int_{[0,1)^{D}} q(\mathbf{u}|\mathbf{x}) \log \frac{p_{\text{model}}(\mathbf{x}+\mathbf{u})}{q(\mathbf{u}|\mathbf{x})} \, d\mathbf{u} \right] \\ &= \mathbb{E}_{\mathbf{x} \sim P_{\text{data}}} \mathbb{E}_{\mathbf{u} \sim q(\cdot|\mathbf{x})} \left[\log \frac{p_{\text{model}}(\mathbf{x}+\mathbf{u})}{q(\mathbf{u}|\mathbf{x})} \right] \end{split}$$

[Ho et al., 2019]

Coupling layers

RealNVP

$$\mathbf{y}_1 = \mathbf{x}_1$$
$$\mathbf{y}_2 = \mathbf{x}_2 \cdot \exp(\mathbf{a}_{\theta}(\mathbf{x}_1)) + \mathbf{b}_{\theta}(\mathbf{x}_1)$$

convolutions

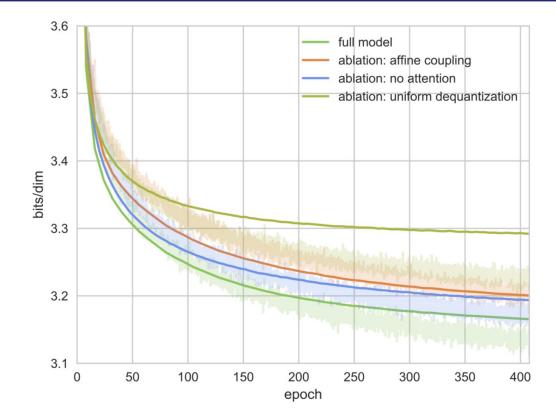
Ours: logistic mixture CDF

 $\mathbf{y}_1 = \mathbf{x}_1$

$$\mathbf{y}_2 = \sigma^{-1} \left(\text{MixLogCDF}(\mathbf{x}_2; \pi_{\theta}(\mathbf{x}_1), \mu_{\theta}(\mathbf{x}_1), \mathbf{s}_{\theta}(\mathbf{x}_1)) \right) \cdot \exp(\mathbf{a}_{\theta}(\mathbf{x}_1)) + \mathbf{b}_{\theta}(\mathbf{x}_1)$$

convolutions & self-attention

Ablation on CIFAR

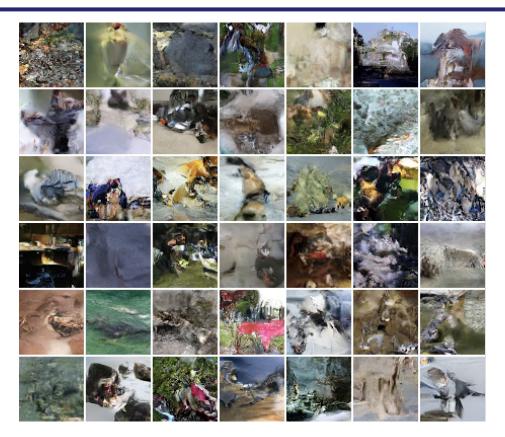


7

Results

Model family	Model	CIFAR10	ImageNet 32x32	ImageNet 64x64
Non-autoregressive	RealNVP (Dinh et al., 2016) Glow (Kingma & Dhariwal, 2018) IAF-VAE (Kingma et al., 2016) Flow++ (ours)	3.49 3.35 3.11 3.08	4.28 4.09 - 3.86	3.81
Autoregressive	Multiscale PixelCNN (Reed et al., 2017) PixelCNN (van den Oord et al., 2016b) PixelRNN (van den Oord et al., 2016b) Gated PixelCNN (van den Oord et al., 2016c) PixelCNN + (Salimana et al., 2017)	- 3.14 3.00 3.03 2.92	3.95 3.86 3.83	3.70 - 3.63 3.57
	PixelCNN++ (Salimans et al., 2017) Image Transformer (Parmar et al., 2018) PixelSNAIL (Chen et al., 2017)	2.92 2.90 2.85	3.77 3.80	3.52

Samples (CIFAR10, ImageNet 64x64)



Samples (CelebA 5-bit)

 Slides adapted from Berkeley CS294-158 Deep Unsupervised Learning class: <u>https://sites.google.com/view/berkeley-cs294-158-sp19/home</u>

- Want to learn more about foundation of Deep Generative Models & Self-Supervised learning methods?
- All lecture videos are available on youtube, featuring guest speakers: Ilya Sutskever, Alyosha Efros, Alec Radford, Aaron van den Oord