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Generative model
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D(q(z)|p(x))
Figure Credit: OpenAI



• Consider a batch of particles with distribution
• Update these particles by a small amount (preserve continuity),

such that the distribution of , denoted as , is closer to ,
the distribution of
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Variational Gradient Flow (VGrow)
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• Consider f-divergence

where is convex and .
• KL, JS, Jeffery and log-D divergences are the special cases of f-
divergence.
• By calculating functional gradient (MATH part), we have

where
• Recall that , !(#) can be estimated as
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Connection with Differential
Equation

Gradient Method
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From Gradient Method to ODE
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• Proposed a general framework to learn deep generative models via 
Variational Gradient Flow (VGrow) on probability spaces.
• Proved: The evolving distribution of {!"} that asymptotically converges 

to the target distribution p(x) is governed by a vector field, which is 
the negative gradient of the first variation of the f-divergence 
between q(z) and p(x). (Based Vlasov-Fokker-Planck equation)
• Established connections of VGrow with other popular methods, such 

as VAE, GAN and flow-based methods (Stein Variational Gradient).
• We also evaluated several commonly used divergences, including

Kullback-Leibler, Jensen-Shannon, Jeffrey divergences as well as our 
newly discovered “logD” divergence which serves as the objective
function of the logD-trick GAN.

Summary


