Finding Mixed Nash Equilibria of Generative Adversarial Networks

Ya-Ping Hsieh

ya-ping.hsieh@epfl.ch

Laboratory for Information and Inference Systems (LIONS) École Polytechnique Fédérale de Lausanne (EPFL) Switzerland

ICML

[June 12, 2019]

<u>Joint work with</u> Chen Liu and Volkan Cevher @ LIONS

Learning distributions

- \circ A balancing act between data, models, and computation
 - $\triangleright\,$ upshots: data generation, compression, domain transfer, and recognition
 - > trends: from simple parametric models to super expressive neural networks
 - $\triangleright\,$ challenges: computational costs as well as the difficulty of training

Learning distributions

- \circ A balancing act between data, models, and computation
 - ▷ upshots: data generation, compression, domain transfer, and recognition
 - > trends: from simple parametric models to super expressive neural networks
 - ▷ challenges: computational costs as well as the difficulty of training
- Highlight: Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]
 - > train a generator neural net, generating "fake" data
 - > train a discriminator neural net, authenticating this data based on "real" samples
 - > setup a minimax game between the two

Learning distributions

- \circ A balancing act between data, models, and computation
 - > upshots: data generation, compression, domain transfer, and recognition
 - > trends: from simple parametric models to super expressive neural networks
 - > challenges: computational costs as well as the difficulty of training
- Highlight: Generative Adversarial Networks (GANs) [Goodfellow et al., 2014]
 - > train a generator neural net, generating "fake" data
 - $\triangleright\,$ train a discriminator neural net, authenticating this data based on "real" samples
 - > setup a minimax game between the two
- o Several variants exist [Karras et al., 2017, Brock et al., 2018]
 ▷ running example: Wasserstein GANs [Arjovsky et al., 2017]

Wasserstein GANs

o A natural pure strategy-based minimax objective

$$\min_{\theta \in \Theta} \max_{w \in \mathcal{W}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{X \sim P_{\mathsf{fake}}} \left[D_w(X) \right].$$

- \triangleright θ : a **generator** neural net
- $\triangleright w$: a discriminator neural net
- \triangleright D_w : output of discriminator at w, highly non-convex/non-concave

Wasserstein GANs

o A natural pure strategy-based minimax objective

$$\min_{\theta \in \Theta} \max_{w \in \mathcal{W}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{X \sim P_{\mathsf{fake}}} \left[D_w(X) \right].$$

- \triangleright θ : a **generator** neural net
- $\triangleright w$: a discriminator neural net
- \triangleright D_w : output of discriminator at w, highly non-convex/non-concave
- Theoretical challenges
 - $\triangleright\,$ a saddle point might NOT exist
 - ▷ no provably convergent algorithm

[Dasgupta and Maskin, 1986]

Wasserstein GANs

o A natural pure strategy-based minimax objective

$$\min_{\theta \in \Theta} \max_{w \in \mathcal{W}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{X \sim P_{\mathsf{fake}}} \left[D_w(X) \right].$$

- \triangleright θ : a **generator** neural net
- $\triangleright w$: a discriminator neural net
- \triangleright D_w : output of discriminator at w, highly non-convex/non-concave

Theoretical challenges

> a saddle point might NOT exist

[Dasgupta and Maskin, 1986]

- ▷ no provably convergent algorithm
- Practical challenges
 - ▷ the simple (alternating) SGD does NOT work well in practice...
 - ▷ adaptive methods (Adam, RMSProp,...) highly unstable, heavy tuning...

Wasserstein GANs: From pure to mixed Nash Equilibrium

 \circ Objective of Wasserstein GANs is a pure strategy formulation:

$$\min_{\theta \in \Theta} \max_{w \in \mathcal{W}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{X \sim P_{\mathsf{fake}}} \left[D_w(X) \right].$$

Wasserstein GANs: From pure to mixed Nash Equilibrium

 \circ Objective of Wasserstein GANs is a pure strategy formulation:

$$\min_{\theta \in \Theta} \max_{w \in \mathcal{W}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{X \sim P_{\mathsf{fake}}} \left[D_w(X) \right].$$

o A new objective of Wasserstein GANs: Our mixed strategy proposal via game theory

$$\min_{\nu \in \mathcal{M}(\Theta)} \max_{\mu \in \mathcal{M}(\mathcal{W})} \mathbb{E}_{w \sim \mu} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right]$$
$$- \mathbb{E}_{w \sim \mu} \mathbb{E}_{\theta \sim \nu} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right].$$

where $\mathcal{M}(\mathcal{Z}) \coloneqq \{ \text{all (regular) probability measures on } \mathcal{Z} \}.$

Wasserstein GANs: From pure to mixed Nash Equilibrium

 \circ Objective of Wasserstein GANs is a pure strategy formulation:

$$\min_{\theta \in \Theta} \max_{w \in \mathcal{W}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{X \sim P_{\mathsf{fake}}} \left[D_w(X) \right].$$

o A new objective of Wasserstein GANs: Our mixed strategy proposal via game theory

$$\begin{split} \min_{\nu \in \mathcal{M}(\Theta)} \max_{\mu \in \mathcal{M}(\mathcal{W})} \mathbb{E}_{w \sim \mu} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] \\ &- \mathbb{E}_{w \sim \mu} \mathbb{E}_{\theta \sim \nu} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right]. \end{split}$$

where $\mathcal{M}(\mathcal{Z}) \coloneqq \{ \mathsf{all (regular) probability measures on } \mathcal{Z} \}.$

• Existence of NE (ν^*, μ^*) : Glicksberg's existence theorem [Glicksberg, 1952].

 \circ Upshot: Our mixed Nash Equilibrium proposal \equiv bi-affine matrix games

 \circ Upshot: Our mixed Nash Equilibrium proposal \equiv bi-affine matrix games

 $\succ \langle \mu, h \rangle \coloneqq \int h d\mu \text{ for a measure } \mu \text{ and function } h \qquad (\text{Riesz representation})$ $\triangleright \text{ the } g\text{-function } g(w) \coloneqq \mathbb{E}_{X \sim P_{\text{real}}} \left[D_w(X) \right]$ $\triangleright \text{ the linear operator } G \text{ and its adjoint } G^{\dagger}:$

$$\begin{split} G: \mathcal{M}(\Theta) &\to \text{a function on } \mathcal{W}, \quad G^{\dagger}: \mathcal{M}(\mathcal{W}) \to \text{ a function on } \Theta, \\ (G\nu)(w) \coloneqq \mathbb{E}_{\theta \sim \nu} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right], \\ (G^{\dagger}\mu)(\theta) \coloneqq \mathbb{E}_{w \sim \mu} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right] \end{split}$$

lions@epfl

 \circ Upshot: Our mixed Nash Equilibrium proposal \equiv bi-affine matrix games

 $\triangleright \langle \mu, h \rangle \coloneqq \int h d\mu \text{ for a measure } \mu \text{ and function } h \qquad (\text{Riesz representation})$ $\triangleright \text{ the } g\text{-function } g(w) \coloneqq \mathbb{E}_{X \sim P_{\text{real}}} \left[D_w(X) \right]$ $\triangleright \text{ the linear operator } G \text{ and its adjoint } G^{\dagger}:$

$$\begin{split} G: \mathcal{M}(\Theta) &\to \text{a function on } \mathcal{W}, \quad G^{\dagger}: \mathcal{M}(\mathcal{W}) \to \text{ a function on } \Theta, \\ (G\nu)(w) \coloneqq \mathbb{E}_{\theta \sim \nu} \mathbb{E}_{X \sim P_{\text{fake}}^{\theta}} \left[D_w(X) \right], \\ (G^{\dagger}\mu)(\theta) \coloneqq \mathbb{E}_{w \sim \mu} \mathbb{E}_{X \sim P_{\text{fake}}^{\theta}} \left[D_w(X) \right] \end{split}$$

• Caveat: Infinite dimensions!!!

lions@epfl

 \circ Upshot: Our mixed Nash Equilibrium proposal \equiv bi-affine matrix games

$$\begin{split} \min_{\boldsymbol{\nu} \in \mathcal{M}(\Theta)} \max_{\boldsymbol{\mu} \in \mathcal{M}(\mathcal{W})} & \mathbb{E}_{w \sim \boldsymbol{\mu}} \mathbb{E}_{X \sim P_{\mathsf{real}}} \left[D_w(X) \right] - \mathbb{E}_{w \sim \boldsymbol{\mu}} \mathbb{E}_{\theta \sim \boldsymbol{\nu}} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right] \\ & \uparrow \\ & \\ \min_{\boldsymbol{\nu} \in \mathcal{M}(\Theta)} \max_{\boldsymbol{\mu} \in \mathcal{M}(\mathcal{W})} \left\langle \boldsymbol{\mu}, \boldsymbol{g} \right\rangle - \left\langle \boldsymbol{\mu}, \boldsymbol{G} \boldsymbol{\nu} \right\rangle \end{split}$$

 $\triangleright \langle \mu, h \rangle \coloneqq \int h d\mu \text{ for a measure } \mu \text{ and function } h \qquad (\text{Riesz representation})$ $\triangleright \text{ the } g\text{-function } g(w) \coloneqq \mathbb{E}_{X \sim P_{\text{real}}} \left[D_w(X) \right]$ $\triangleright \text{ the linear operator } G \text{ and its adjoint } G^{\dagger}:$

$$\begin{split} G: \mathcal{M}(\Theta) &\to \text{a function on } \mathcal{W}, \quad G^{\dagger}: \mathcal{M}(\mathcal{W}) \to \text{ a function on } \Theta, \\ (G\nu)(w) \coloneqq \mathbb{E}_{\theta \sim \nu} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right], \\ (G^{\dagger}\mu)(\theta) \coloneqq \mathbb{E}_{w \sim \mu} \mathbb{E}_{X \sim P_{\mathsf{fake}}^{\theta}} \left[D_w(X) \right] \end{split}$$

• Caveat: Infinite dimensions!!!

 $\triangleright~$ Ideas for finite-dimensional games apply: Mirror Descent.

Entropic Mirror Descent Iterates in Infinite Dimension

- \circ Negative Shannon entropy and its Fenchel dual: (dz :=Lebesgue)
 - $\triangleright \ \Phi(\mu) = \int \mu \log \frac{d\mu}{dz}.$
 - $\triangleright \Phi^{\star}(h) = \log \int e^h.$
 - $\triangleright \ d\Phi$ and $d\Phi^{\star}$: Fréchet derivatives.¹

Theorem (Infinite-Dimensional Mirror Descent, informal)

For a learning rate η , a probability measure μ , and an arbitrary function h, we can equivalently define

$$\mu_{+} = \mathsf{MD}_{\eta}\left(\mu, h\right) \quad \equiv \quad \mu_{+} = d\Phi^{\star}\left(d\Phi(\mu) - \eta h\right) \equiv \quad d\mu_{+} = \frac{e^{-\eta h}d\mu}{\int e^{-\eta h}d\mu}.$$

Moreover, the convergence rates are the same as in finite dimension.

Continuous analog of the entropic mirror descent

[Beck and Teboulle, 2003] [Nemirovski, 2004]

> Mirror-prox also possible

 $^{^1 \}mbox{Under mild}$ regularity conditions on the measure/function.

A Practical Algorithm

Algorithm 1: INFINITE-DIMENSIONAL ENTROPIC MD

Input: Initial distributions μ_1, ν_1 , learning rate η for t = 1, 2, ..., T - 1 do $\lfloor \nu_{t+1} = \text{MD}_{\eta} \left(\nu_t, -G^{\dagger} \mu_t \right), \quad \mu_{t+1} = \text{MD}_{\eta} \left(\mu_t, -g + G \nu_t \right);$ return $\bar{\nu}_T = \frac{1}{T} \sum_{t=1}^T \nu_t$ and $\bar{\mu}_T = \frac{1}{T} \sum_{t=1}^T \mu_t$.

A Practical Algorithm

Algorithm 1: INFINITE-DIMENSIONAL ENTROPIC MD

Input: Initial distributions μ_1, ν_1 , learning rate η for t = 1, 2, ..., T - 1 do $\lfloor \nu_{t+1} = \mathrm{MD}_{\eta} (\nu_t, -G^{\dagger}\mu_t), \quad \mu_{t+1} = \mathrm{MD}_{\eta} (\mu_t, -g + G\nu_t);$ return $\bar{\nu}_T = \frac{1}{T} \sum_{t=1}^T \nu_t$ and $\bar{\mu}_T = \frac{1}{T} \sum_{t=1}^T \mu_t$.

 \circ How do we run it?

Cannot update probability measures.

A Practical Algorithm

Algorithm 1: INFINITE-DIMENSIONAL ENTROPIC MD

Input: Initial distributions μ_1, ν_1 , learning rate η for t = 1, 2, ..., T - 1 do $\lfloor \nu_{t+1} = \text{MD}_{\eta} (\nu_t, -G^{\dagger}\mu_t), \quad \mu_{t+1} = \text{MD}_{\eta} (\mu_t, -g + G\nu_t);$ return $\bar{\nu}_T = \frac{1}{T} \sum_{t=1}^T \nu_t$ and $\bar{\mu}_T = \frac{1}{T} \sum_{t=1}^T \mu_t$.

- \circ How do we run it?
 - Cannot update probability measures.

- Key idea: Can take samples using SGLD [Welling and Teh, 2011]!!
 - \triangleright Leading to updates as cheap as SGD.
 - ▷ For more details as well as numerical evidence, please visit our poster.

Thanks!!

