Predicate Exchange

Inference with Declarative Knowledge

Zenna Tavares

Javier Burroni, Edgar Minasyan, Armando Solar Lezama, Rajesh Ranganath

Objective

Motivation: Conditioning on equality-to-data is insufficient to express most facts. Inference support for the broader class of predicates is limited.

Objective

Motivation: Conditioning on equality-to-data is insufficient to express most facts. Inference support for the broader class of predicates is limited.

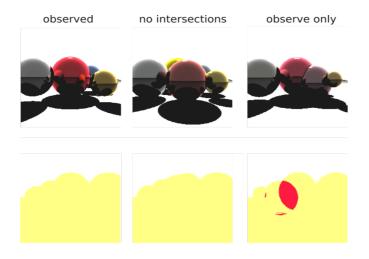
Objective: Given a probabilistic simulator π and predicate ℓ on the output of π , sample from posterior $p(\pi \mid \ell \text{ is true})$.

Priors with constraints

condition on balls not intersecting

Inverse Graphics with constraints

condition on balls not intersecting



Predicate Exchange

Predicate Exchange: An inference prodecure which samples from models conditioned on predicates, through two steps:

- (i) **Predicate Relaxation** constructs a soft predicate $\tilde{\ell}$ from ℓ . $\tilde{\ell}$ maps \mathbf{x} to a value in a continuous Boolean algebra: the unit interval [0,1] with continuous logical connectives $\tilde{\wedge}$, $\tilde{\vee}$ and $\tilde{\neg}$.
 - (i) Soft equality x = y: $k_{\alpha}(\rho(x, y))$
 - (ii) Soft inequality $x \tilde{>} y$: $k_{\alpha}(\rho(x, [y, \infty])$
 - (iii) Soft conjunction $\tilde{\wedge}$: $\max(x, y)$
 - (iv) Soft disjunction $\tilde{\vee}$: $\min(x, y)$

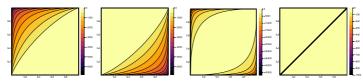


Figure 1:log of $x \tilde{>} y, x \tilde{<} y, x \tilde{=} y$, and $\tilde{\neg}(x \tilde{=} y)$

Convert predicates into soft predicates

Soft predicate represents degree to which hard predicate is satisfied

$$(x > y) \lor \neg(x^2 = 2) \rightarrow (x \tilde{>} y) \tilde{\lor} \tilde{\neg}(x^2 \tilde{=} 2)$$

Approximate Posterior

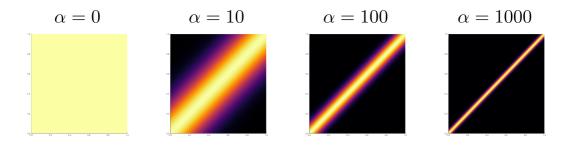
Assuming a prior density p, the approximate posterior f is the product:

$$f(\mathbf{x}) = p(\mathbf{x}) \cdot \tilde{\ell}(\mathbf{x})$$

Example: if $X_{1,2} \sim \mathcal{N}(0,1)$ is conditioned on $X_1 + X_2 = 0$, aprx posterior:

$$f_{\alpha}(x_1, x_2) = \mathcal{N}_{0,1}(x_1) \cdot \mathcal{N}_{0,1}(x_2) \cdot k_{\alpha}(\rho(x_1 + x_2, 0))$$

Temperature trades-off accuracy / convergence



Replica Exchange

(ii) **Replica Exchange** is a MCMC method that simulates several replicas conditioned model at different temperatures

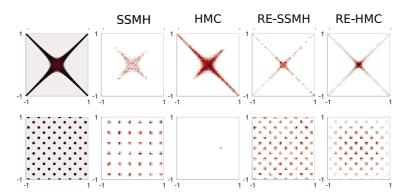


Figure 2:Samples from single site MH, Hamiltonian Monte Carlo, and replica exchange

Omega.jl: A Causal, Higher-Order PPL

github.com/zenna/Omega.jl

Poster #52

causal inference

