
Tensor Variable Elimination
for Plated Factor Graphs
Fritz Obermeyer*, Eli Bingham*, Martin Jankowiak*, 

Justin Chiu, Neeraj Pradhan, Alexander Rush, Noah Goodman



Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion



Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion



Learning and inference with discrete latent variables

(Kingma et al. 2014) (McClintock et al. 2016) (Obermeyer et al. 2019)



Probabilistic inference offers a unified approach to uncertainty 
estimation, model selection, and imputation.

Exact inference is theoretically tractable in many popular discrete latent 
variable models.

Algorithms and software have not kept up with growth of models and 
data, and integration with deep learning is difficult and time-consuming.

Learning and inference with discrete latent variables



Factor graphs represent products of functions of many variables.

They are a unifying intermediate representation for many types of 
discrete probabilistic models, like directed graphical models.

Background: Factor graphs



Background: Factor graph inference

Sum-product computations on factor graphs are performed by variable elimination:

P(Z = z)

Probabilistic inference is an instance of a sum-product problem:
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Focus: Plated factor graphs

?

Plates represent repeated structure in graphical models:

Can we use plates to represent repeated structure in variable elimination algorithms?



Plated factor graph inference

Define the plated sum-product problem on a plated factor graph
as the sum-product problem on an unrolled version of the plated factor graph:



Challenges: Plated factor graph inference
Although mathematically convenient, unrolling may limit parallelism, use 
memory inefficiently, and obscure the relationship to the original model

Can we derive a variable elimination algorithm that solves the 
PlatedSumProduct problem directly?
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Algorithm: Tensor variable elimination
while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)
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Compute strongly connected 
components of a bipartite graph

Perform variable elimination on a batch 
of structurally identical factor graphs

Compute the elementwise product of 
factors along one or more plate indices

We rely on three plate-aware 
subroutines to avoid unrolling:



Algorithm: Tensor variable elimination
while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination
while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)



Algorithm: Computational complexity
Theorem: for any PlatedSumProduct instance, the following are equivalent:

1. The PlatedSumProduct instance has complexity polynomial in all plate sizes

2. Tensor variable elimination solves the instance in time polynomial in all plate sizes



Algorithm: Computational complexity
Theorem: for any PlatedSumProduct instance, the following are equivalent:

1. The PlatedSumProduct instance has complexity polynomial in all plate sizes

2. Tensor variable elimination solves the instance in time polynomial in all plate sizes

3. Neither of the following graph minors appear in the plated factor graph:

Hard: Hard:



Algorithm: Computational complexity
Hard: Hard:

Fully coupled joint distribution Restricted Boltzmann Machine
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Implementation: exploiting existing software
while any factors in graph G have plates:

  

  L <- maximal factor plate set in G

  G
L
 <- subgraph of G in L

  for subgraph G
C
 in Partition(G

L
):

    f <- SumProduct(G
C
)

    L’ <- plates of all variables of f in G

    f’ <- Product(f, L – L’)

    remove G
C
 from G and insert f’ into G

return SumProduct(G)

High-performance, parallelized 
SumProduct and Product 
available as tensor contractions 
(einsum and prod in NumPy)



Implementation: Integration with the Pyro PPL

@pyro.infer.config_enumerate

def model(z):

  I, J = z.shape

  x = pyro.sample("x", Bernoulli(Px))

  with pyro.plate("I", I):

    y = pyro.sample("y", Bernoulli(Py))

    with pyro.plate("J", J):

      pyro.sample("z", Bernoulli(Pz[x,y]),obs=z)

pyro.ops.contract.einsum(
  "x,iy,ijxy->",
  F, G, H,
  plates="ij"
)

High-level interface for specifying 
generative discrete latent variable models:

Low-level interface for specifying discrete 
plated factor graphs directly:



Implementation: Scaling with parallel hardware
Theorem: if TVE runs in sequential time T when plates all have size 1,
then it runs in time T + O(log(plate sizes)) on a parallel machine
with prod(plate sizes)-many processors, with perfect efficiency.

Experiment: our GPU-accelerated implementation in Pyro achieves this scaling:
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Experiments
We evaluated our implementation on three real-world tasks with large datasets, 
multiple overlapping plates and a wide variety of graphical model structures:

1. Learning generative models of polyphonic music
2. Explaining animal behavior with discrete state-space models
3. Inferring word sentiment from sentence-level labels

Our results illustrate the scalability and ease of model iteration afforded by TVE.



We aim to learn generative models with 
tractable likelihoods and samplers for three 
polyphonic music datasets

We use Pyro to implement a variety of discrete 
state space models with autoregressive 
likelihoods and neural transition functions

Experiment 1: Polyphonic Music Modeling



Experiment 1: Polyphonic Music Modeling



We model group foraging behavior of a 
colony of harbour seals using GPS data

Real-world scientific application where 
variation between individuals and sexes 
requires more complex model

We replicate the original analysis 
without writing custom inference code

Experiment 2: Animal population movement



Experiment 2: Animal population movement



Experiment 3: word sentiment from weak supervision

A synthetic example with Sentihood-style annotations:

An example sentence from the Sentihood dataset:

(Saeidi et al 2016)



Neural CRF inference and learning in one line of Python code:

Z, hy = pyro.ops.contract.einsum("ntz,ntyz,ny->n,ny", F, G, P_Y, plates="t")

Experiment 3: word sentiment from weak supervision



<Your experiment here>

Find tutorials, examples, and more online at
pyro.ai

Install Pyro and get started today! 
pip install -U pyro-ppl

https://pyro.ai/
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