
Tensor Variable Elimination
for Plated Factor Graphs
Fritz Obermeyer*, Eli Bingham*, Martin Jankowiak*,

Justin Chiu, Neeraj Pradhan, Alexander Rush, Noah Goodman

Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion

Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion

Learning and inference with discrete latent variables

(Kingma et al. 2014) (McClintock et al. 2016) (Obermeyer et al. 2019)

Probabilistic inference offers a unified approach to uncertainty
estimation, model selection, and imputation.

Exact inference is theoretically tractable in many popular discrete latent
variable models.

Algorithms and software have not kept up with growth of models and
data, and integration with deep learning is difficult and time-consuming.

Learning and inference with discrete latent variables

Factor graphs represent products of functions of many variables.

They are a unifying intermediate representation for many types of
discrete probabilistic models, like directed graphical models.

Background: Factor graphs

Background: Factor graph inference

Sum-product computations on factor graphs are performed by variable elimination:

P(Z = z)

Probabilistic inference is an instance of a sum-product problem:

Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion

Focus: Plated factor graphs

?

Plates represent repeated structure in graphical models:

Can we use plates to represent repeated structure in variable elimination algorithms?

Plated factor graph inference

Define the plated sum-product problem on a plated factor graph
as the sum-product problem on an unrolled version of the plated factor graph:

Challenges: Plated factor graph inference
Although mathematically convenient, unrolling may limit parallelism, use
memory inefficiently, and obscure the relationship to the original model

Can we derive a variable elimination algorithm that solves the
PlatedSumProduct problem directly?

Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion

Algorithm: Tensor variable elimination
while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination
while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Compute strongly connected
components of a bipartite graph

Perform variable elimination on a batch
of structurally identical factor graphs

Compute the elementwise product of
factors along one or more plate indices

We rely on three plate-aware
subroutines to avoid unrolling:

Algorithm: Tensor variable elimination
while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination
while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Computational complexity
Theorem: for any PlatedSumProduct instance, the following are equivalent:

1. The PlatedSumProduct instance has complexity polynomial in all plate sizes

2. Tensor variable elimination solves the instance in time polynomial in all plate sizes

Algorithm: Computational complexity
Theorem: for any PlatedSumProduct instance, the following are equivalent:

1. The PlatedSumProduct instance has complexity polynomial in all plate sizes

2. Tensor variable elimination solves the instance in time polynomial in all plate sizes

3. Neither of the following graph minors appear in the plated factor graph:

Hard: Hard:

Algorithm: Computational complexity
Hard: Hard:

Fully coupled joint distribution Restricted Boltzmann Machine

Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion

Implementation: exploiting existing software
while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

High-performance, parallelized
SumProduct and Product
available as tensor contractions
(einsum and prod in NumPy)

Implementation: Integration with the Pyro PPL

@pyro.infer.config_enumerate

def model(z):

 I, J = z.shape

 x = pyro.sample("x", Bernoulli(Px))

 with pyro.plate("I", I):

 y = pyro.sample("y", Bernoulli(Py))

 with pyro.plate("J", J):

 pyro.sample("z", Bernoulli(Pz[x,y]),obs=z)

pyro.ops.contract.einsum(
 "x,iy,ijxy->",
 F, G, H,
 plates="ij"
)

High-level interface for specifying
generative discrete latent variable models:

Low-level interface for specifying discrete
plated factor graphs directly:

Implementation: Scaling with parallel hardware
Theorem: if TVE runs in sequential time T when plates all have size 1,
then it runs in time T + O(log(plate sizes)) on a parallel machine
with prod(plate sizes)-many processors, with perfect efficiency.

Experiment: our GPU-accelerated implementation in Pyro achieves this scaling:

Outline
● Background and Motivation: Discrete Latent Variables
● Models: Plated Factor Graphs
● Inference Algorithm: Tensor Variable Elimination
● Implementation in Pyro
● Experiments and Discussion

Experiments
We evaluated our implementation on three real-world tasks with large datasets,
multiple overlapping plates and a wide variety of graphical model structures:

1. Learning generative models of polyphonic music
2. Explaining animal behavior with discrete state-space models
3. Inferring word sentiment from sentence-level labels

Our results illustrate the scalability and ease of model iteration afforded by TVE.

We aim to learn generative models with
tractable likelihoods and samplers for three
polyphonic music datasets

We use Pyro to implement a variety of discrete
state space models with autoregressive
likelihoods and neural transition functions

Experiment 1: Polyphonic Music Modeling

Experiment 1: Polyphonic Music Modeling

We model group foraging behavior of a
colony of harbour seals using GPS data

Real-world scientific application where
variation between individuals and sexes
requires more complex model

We replicate the original analysis
without writing custom inference code

Experiment 2: Animal population movement

Experiment 2: Animal population movement

Experiment 3: word sentiment from weak supervision

A synthetic example with Sentihood-style annotations:

An example sentence from the Sentihood dataset:

(Saeidi et al 2016)

Neural CRF inference and learning in one line of Python code:

Z, hy = pyro.ops.contract.einsum("ntz,ntyz,ny->n,ny", F, G, P_Y, plates="t")

Experiment 3: word sentiment from weak supervision

<Your experiment here>

Find tutorials, examples, and more online at
pyro.ai

Install Pyro and get started today!
pip install -U pyro-ppl

https://pyro.ai/

Algorithm: Tensor variable elimination

{} < { I } < { I, J }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

Algorithm: Tensor variable elimination

{ } < { I }

while any factors in graph G have plates:

 L <- maximal factor plate set in G

 G
L
 <- subgraph of G in L

 for subgraph G
C
 in Partition(G

L
):

 f <- SumProduct(G
C
)

 L’ <- plates of all variables of f in G

 f’ <- Product(f, L – L’)

 remove G
C
 from G and insert f’ into G

return SumProduct(G)

