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Bayesian Optimization

Goal: black-box optimization

max
x

f (x), f (·): expensive, black-box function.

Bayesian Optimization:

Iteratively acquire new points based on an acquisition function:

xnew ← arg maxx α(x | D),

Dnew ← D ∪ {xnew , f (xnew )}, Black-Box	Function input output 

New Input Acquisition	Function 

Acquisition function:

α(x | D) := Ef [f (x) | D] + η
√

varf [f (x) | D]. (UCB)
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Batch Bayesian Optimization:

Find multiple query points {xi}mi=1 in parallel at every iteration.

Much more challenging; two desiderata:

Diversity: Everyone should be unique.

Qualification: Everyone should be good.
Black-Box	Function input output 

New Inputs 

Acquisition	Function 

Next Query Points 

Diversity											✔
High-Quality					✗ 

Diversity											✗
		High-Quality					✔ 
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Optimizing the distribution ρ of query points {xi} by

max
ρ

{
F [ρ] := Eωρ [α(x)] + ηH[ρ]

}
.

H[ρ] is the entropy. It encourages the diversity.

Eωρ [·] is a quantile distorted expectation. It enforces qualification,

Eωρ [α(x)] =

∫ 1

0
Qβ

f ,ρω(β)dβ,

Qβ
f ,ρ is the β-th quantile of α(x), when x ∼ ρ.

ω : [0, 1]→ R+ is a distortion function:

Risk neutral: ω(β) = 1.
Risk aversion: ω(β) is monotonic decreasing.
Risk seeking: ω(β) is monotonic increasing.

We want risk aversion: Take ω(β) = β−λ, where λ ≥ 0.
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Quantile Stein Variational Gradient Descent [Liu, Wang 16]

Idea: Find particle distributions

ρ :=
n∑

i=1

δxi/n

to approximately solve the optimization.
The particles {xi}ni=1 are iteratively moved
to maximize the objective by gradient-like
updates

x ′i ← xi + εφ∗(xi ), φ∗ = arg max
φ∈H

{
d

dε
F [ρ′]

∣∣
ε=0

s.t. ||φ||H ≤ 1

}
,

ε: step-size; φ∗: chosen to maximize the objective function as fast as
possible. H: a reproducing kernel Hilbert space (RKHS) with positive
definite kernel k(x , x ′).
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Quantile Stein Variational Gradient Descent [Liu, Wang 16]

Optimization:

max
ρ

{
F [ρ] := Eωρ [α(x)] + ηH[ρ]

}
.

Algorithm:

xi ← xi +
ε

n

n∑
i=1

[ ξ(xj)︸︷︷︸
quantile

∇xα(xj)k(xj , xi )︸ ︷︷ ︸
gradient

+ η∇xjk(xj , xi )︸ ︷︷ ︸
repulsive force

], ∀i = 1, . . . , n.

Here, each particle is assigned a weight to account the distortion function:

ξ(xj) = ω

(
rank(xj)

n

)
, rank(xj) =

n∑
`=1

I[α(x`) ≤ α(xj)].
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Empirical Results

Standard Benchmarks

LP-UCB DPP MACE QSBO-UCB
( Gonzalez et. al., 2016) (Kathuria et. al., 2016) (Lyu et. al., 2018) Ours

Branin 3.28e-4 9.63e-4 2.85e-5 5.14e-5
Eggholder 51.34 82.81 74.14 46.86
Dropwave 0.14 0.13 0.09 0.07
CrossInTray 6.83e-3 7.64e-3 3.78e-4 1.35e-4
gSobol5 1.85 2.34 1.14 0.32
gSobol10 1.04e2 1.07e3 48.92 31.19
gSobol15 2.34e3 5.28e3 6.39e2 3.61e2
Ackley5 3.71 3.74 2.36 2.23
Ackley10 3.87 4.23 3.01 2.41
Alpine2 75.92 73.39 63.29 73.01

Table: Negative Rewards
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Empirical Results

Automatic Chemical Design (Gomez-Bombarelli et. al., 2018; Griffiths, 2017)

LP-UCB DPP MACE QSBO-UCB

QED 0.91±0.05 0.91±0.06 0.92±0.03 0.93±0.03
SAS 2.18± 0.06 2.29±0.08 2.16±0.04 2.08±0.05
LogP 0.50±0.11 0.47±0.07 0.41±0.06 0.33±0.08

QED:0.355 

						QED:0.459																																QED:0.622																															QED:0.872																													QED:0.923 

QED:0.941 
... 

Figure: Illustration of the search process of our QSBO-UCB.
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Conclusions

1 A new algorithm (QSVGD) for risk-sensitive objective

2 Risk-aversion samples for batch Bayesian optimization

3 Good empirical results

Thank You
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