Quantile Stein Variational Gradient Descent for Batch Bayesian Optimization

$\label{eq:charge} Chengyue \ Gong^{[1]} \quad Jian \ Peng^{[2]} \quad Qiang \ Liu^{[1]}$

[1] The University of Texas at Austin[2] University of Illinois at Urbana-Champaign

Bayesian Optimization

• Goal: black-box optimization

 $\max_{x} f(x), \qquad f(\cdot): \text{ expensive, black-box function.}$

No. Toront

• Bayesian Optimization:

Iteratively acquire new points based on an acquisition function:

$$x^{new} \leftarrow \arg \max_{x} \alpha(x \mid \mathcal{D}),$$

$$\mathcal{D}^{new} \leftarrow \mathcal{D} \cup \{x^{new}, f(x^{new})\},$$

$$(a) \quad (b) \quad (a) \quad (b) \quad (b)$$

Acquisition function:

$$\alpha(x \mid \mathcal{D}) := \mathbb{E}_f[f(x) \mid \mathcal{D}] + \eta \sqrt{\operatorname{var}_f[f(x) \mid \mathcal{D}]}. \quad (UCB)$$

output

• Batch Bayesian Optimization:

Find multiple query points $\{x_i\}_{i=1}^m$ in parallel at every iteration.

• Much more challenging; two desiderata:

- Diversity: Everyone should be unique.
- Qualification: Everyone should be good.

★ Next Ouery Points

• Optimizing the distribution ρ of query points $\{x_i\}$ by

$$\max_{\rho} \left\{ F[\rho] := \mathbb{E}_{\rho}^{\omega}[\alpha(x)] + \eta H[\rho] \right\}.$$

• $H[\rho]$ is the entropy. It encourages the diversity.

• $\mathbb{E}_{\rho}^{\omega}[\cdot]$ is a quantile distorted expectation. It enforces qualification,

$$\mathbb{E}_{\rho}^{\omega}[\alpha(x)] = \int_{0}^{1} Q_{f,\rho}^{\beta} \omega(\beta) d\beta,$$

•
$$Q^{eta}_{f,
ho}$$
 is the eta -th quantile of $lpha(x)$, when $x\sim
ho$.

- $\omega \colon [0,1] \to \mathbb{R}_+$ is a distortion function:
- Risk neutral: $\omega(\beta) = 1$.
- Risk aversion: $\omega(\beta)$ is monotonic decreasing.
- Risk seeking: $\omega(\beta)$ is monotonic increasing.

We want risk aversion: Take $\omega(\beta) = \beta^{-\lambda}$, where $\lambda \ge 0$.

Quantile Stein Variational Gradient Descent [Liu, Wang 16]

Idea: Find particle distributions

$$\rho := \sum_{i=1}^n \delta_{x_i}/n$$

to approximately solve the optimization. The particles $\{x_i\}_{i=1}^n$ are iteratively moved to maximize the objective by gradient-like updates

$$x'_i \leftarrow x_i + \epsilon \phi^*(x_i), \qquad \phi^* = \operatorname*{arg\,max}_{\phi \in \mathcal{H}} \left\{ \frac{d}{d\epsilon} F[\rho'] \Big|_{\epsilon=0} \ s.t. \ ||\phi||_{\mathcal{H}} \leq 1 \right\},$$

 ϵ : step-size; ϕ^* : chosen to maximize the objective function as fast as possible. \mathcal{H} : a reproducing kernel Hilbert space (RKHS) with positive definite kernel k(x, x').

Quantile Stein Variational Gradient Descent [Liu, Wang 16]

Optimization:

$$\max_{\rho} \bigg\{ F[\rho] := \mathbb{E}_{\rho}^{\omega}[\alpha(x)] + \eta H[\rho] \bigg\}.$$

Algorithm:

$$x_{i} \leftarrow x_{i} + \frac{\epsilon}{n} \sum_{i=1}^{n} [\underbrace{\xi(x_{j})}_{quantile} \underbrace{\nabla_{x} \alpha(x_{j}) k(x_{j}, x_{i})}_{\text{gradient}} + \underbrace{\eta \nabla_{x_{j}} k(x_{j}, x_{i})}_{\text{repulsive force}}], \quad \forall i = 1, \dots, n.$$

Here, each particle is assigned a weight to account the distortion function:

$$\xi(x_j) = \omega\left(\frac{\operatorname{rank}(x_j)}{n}\right), \qquad \operatorname{rank}(x_j) = \sum_{\ell=1}^n \mathbb{I}[\alpha(x_\ell) \le \alpha(x_j)].$$

Empirical Results

Standard	Benchmarks

	LP-UCB	DPP	MACE	QSBO-UCB
	(Gonzalez et. al., 2016)	(Kathuria et. al., 2016)	(Lyu et. al., 2018)	Ours
Branin	3.28e-4	9.63e-4	2.85e-5	5.14e-5
Eggholder	51.34	82.81	74.14	46.86
Dropwave	0.14	0.13	0.09	0.07
CrossInTray	6.83e-3	7.64e-3	3.78e-4	1.35e-4
gSobol5	1.85	2.34	1.14	0.32
gSobol10	1.04e2	1.07e3	48.92	31.19
gSobol15	2.34e3	5.28e3	6.39e2	3.61e2
Ackley5	3.71	3.74	2.36	2.23
Ackley10	3.87	4.23	3.01	2.41
Alpine2	75.92	73.39	63.29	73.01

Table: Negative Rewards

Empirical Results

Automatic Chemical Design (Gomez-Bombarelli et. al., 2018; Griffiths, 2017)

	LP-UCB	DPP	MACE	QSBO-UCB
QED	$0.91{\pm}0.05$	$0.91{\pm}0.06$	$0.92{\pm}0.03$	0.93±0.03
SAS	$2.18 \pm \ 0.06$	$2.29{\pm}0.08$	$2.16{\pm}0.04$	$2.08{\pm}0.05$
LogP	$0.50{\pm}0.11$	$0.47{\pm}0.07$	$0.41{\pm}0.06$	0.33±0.08

Figure: Illustration of the search process of our QSBO-UCB.

Conclusions

Q A new algorithm (QSVGD) for risk-sensitive objective

Q Risk-aversion samples for batch Bayesian optimization

Good empirical results

Thank You

Poster #239, Today 06:30 PM -09:00 PM @ Pacific Ballroom