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Challenges in Bayesian Inference

Suppose we observe y1:n
iid∼ F0. We are interested in a parameter

θ ∈ Θ ⊆ Rp, which indexes a family of probability densities
FΘ = {fθ(y); θ ∈ Θ}.

Model misspecification

I Bayesian inference assumes that f0 ∈ FΘ

I Unlikely in large and complex datasets

Computation

I Markov chain Monte Carlo is inherently serial, computationally
expensive, and struggles with multimodal posteriors

I Difficult to quantify the approximation of Variational Bayes, and
poor uncertainty estimates
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Bayesian Nonparametric Learning

We present a scalable Bayesian nonparametric learning (NPL) routine with
the following properties:

I A Dirichlet process (DP) prior on the unknown data distribution
accounts for model misspecification.

I We sample from the NPL posterior through parallel optimizations of
randomized objective functions.

I Our method is adept at sampling from multimodal posterior
distributions via a random restart mechanism.
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Bayesian Nonparametric Learning [Lyddon et al., 2018]

Suppose we observe y1:n
iid∼ F0.

Our parameter of interest is defined:

θ0(F0) = arg min
θ

∫
`(y , θ)dF0(y) (1)

I For example, `(y , θ) = |y − θ| gives the median and (y − θ)2 gives
the mean.

I For model fitting, let `(y , θ) = − log fθ(y), where fθ is the density of
some parametric model.
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Our NPL Posterior

We elicit a Dirichlet process prior on the unknown sampling distribution:

F ∼ DP (α,Fπ) (2)

Calculate the posterior over F from the conjugacy of the DP:

[F |y1:n] ∼ DP (α + n,Gn)

Gn =
α

α + n
Fπ +

1

α + n

n∑
i=1

δyi
(3)

Then the NPL posterior over θ is defined:

π̃(θ|y1:n) =

∫
π(θ|F )dπ(F |y1:n) (4)

where π(θ|F ) = δθ0(F )(θ); the delta arises as θ is a deterministic
functional of F as in (1).
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Sampling from the NPL Posterior

Algorithm 1 NPL Posterior Sampling

for i = 1 to B do
Draw F (i) ∼ π(F |y1:n)
θ(i) = arg minθ

∫
`(y , θ)dF (i)(y)

end for

Here θ(i) ∼ π̃(θ|y1:n) and B is the number of posterior samples.

I NPL posterior is usually intractable

I Embarrassingly parallel sampling scheme
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Properties of NPL Posterior

Theoretical properties follow from properties of the DP

Consistency at θ0, from the properties of the DP. This is true
irrespective of the choice of Fπ.

Asymptotic dominance of π̃(·|y1:n) over π(·|y1:n) for α = 0:

Ey1:n∼q [KL(q(·)||π(·|y1:n))− KL(q(·)||π̃(·|y1:n))]

= K (q(·)) + o(n−1)

for all distributions q, where K is a non-negative and possibly positive
real-valued functional.
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The Posterior Bootstrap

Draws of F from the posterior DP are almost surely discrete:

θ(F ) = arg min
θ

∫
`(y , θ)dF (y)

= arg min
θ

∞∑
k=1

wk`(ỹk , θ)

(5)

where w1:∞ ∼ GEM(α + n) and ỹ1:∞
iid∼ Gn from the stick-breaking

construction.

As an approximation, we can truncate the sum to obtain the posterior
bootstrap.
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The Posterior Bootstrap

Algorithm 2 Posterior Bootstrap Sampling

Define T as truncation limit
Observed samples are y1:n

for i = 1 to B do
Draw prior pseudo-samples ỹ

(i)
1:T

iid∼ Fπ

Draw (w
(i)
1:n, w̃

(i)
1:T ) ∼ Dir (1, . . . , 1, α/T , . . . , α/T )

θ(i) = arg minθ

{∑n
j=1 w

(i)
j `(yj , θ)

+
∑T

k=1 w̃
(i)
k `(ỹ

(i)
k , θ)

}
end for
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The Posterior Bootstrap for a Linear Model

For a simple linear model

fβ(y |x) = N (y ;βx + γ, 1)

sample
(
β(i), γ(i)

)
∼ π̃(β, γ|y)

with α = 0. Here n = 11 and
B = 10000.
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Multimodality

If `(y , θ) is non-convex, then the NPL posterior may be multimodal.

We approximate the global minimization with random restart with R
local minimizations.

Algorithm 3 Random Restart NPL Posterior Sampling

for i = 1 to B do
Draw F (i) ∼ DP(α + n,Gn)
for r = 1 to R do

Draw θinit
r ∼ π0

θ
(i)
r = local arg minθ

(∫
`(y , θ)dF (i)(y), θinit

r

)
end for
θ(i) = arg minr

∫
`(y , θ

(i)
r )dF (i)(y)

end for
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Related Approaches

In [Lyddon et al., 2018], they let π(F ) be a mixture of Dirichlet processes:

F |θ ∼ DP (α,Fθ) ; θ ∼ π(θ) (6)

where (fθ, π(θ)) is the conventional Bayesian likelihood and prior.

I They recover conventional Bayesian inference for α→∞
I Posterior π(F |y1:n) requires sampling from Bayesian posterior
π(θ|y1:n), which is the computationally difficult step
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Related Approaches

I Bayesian bootstrap [Rubin, 1981] for α = 0

I Weighted likelihood bootstrap [Newton and Raftery, 1994] if we further
set `(y , θ) = − log fθ(y)

I General Bayesian updating [Bissiri et al., 2016] also uses the expected
loss to define a posterior
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Gaussian Mixture Model

Our Bayesian model for K-component diagonal GMM with non-conjugate
prior is:

yi |π,µ,σ ∼
K∑

k=1

πkN
(
µk , diag(σ2

k)
)

π|a0 ∼ Dir(a0, . . . , a0)

µkj ∼ N (0, 1)

σkj ∼ logNormal(0, 1)

(7)

For NPL, we are interested in model fitting, so our loss function is simply
the negative log-likelihood:

`(y,π,µ,σ) = − log
K∑

k=1

πkN
(
y;µk , diag(σ2

k)
)

(8)
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Gaussian Mixture Model: Toy Data

Toy data from a GMM with K = 3, d = 1 and the parameters:

π0 = {0.1, 0.3, 0.6}, µ0 = {0, 2, 4}, σ2
0 = {1, 1, 1} (9)

ntrain = 1000, ntest = 250

As n >> d , we elicit a noninformative NPL prior with α = 0
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Gaussian Mixture Model: Toy Data

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

RR-NPL, R = 10

0.00

0.02

0.04

0.06

0.08

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

FI-NPL

0.0

1.2

2.4

3.6

4.8

6.0

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

NUTS

0.0

0.4

0.8

1.2

1.6

2.0

−2 0 2 4 6
µ1

−2

0

2

4

6

µ
2

ADVI

0

4

8

12

16

20

Figure 1: Posterior KDE of (µ1, µ2) in K=3 toy GMM problem
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Figure 2: Posterior KDE of (µ1, µ2) in K=3 toy GMM problem for RR-NPL with
increasing R
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Sparse Logistic Regression

Our Bayesian model for sparse logistic is:

yi |xi ,β, β0 ∼ Bernoulli(ηi )

ηi = σ(βTxi + β0)

βj ∼ Student-t

(
2a, 0,

b

a

) (10)

For NPL, we use the loss:

`(y , x,β, β0) = − (y log η + (1− y) log(1− η))

+γ

(
2a + 1

2

) d∑
j=1

log

(
1 +

β2
j

2b

)
(11)
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Sparse Logistic Regression: UCI Datasets

We use 3 binary classification datasets from UCI ML repo: ‘Adult’
(n = 36177, d = 96), ‘Polish companies bankruptcy’ (n = 8402, d = 64),
and ‘Arcene’ (n = 100, d = 10000)

Table 1: Mean log pointwise predictive density on held-out test data for LogReg

Data Set Loss-NPL NUTS ADVI

Adult -0.326 -0.326 -0.327
Polish -0.229 -3.336 -0.247
Arcene -0.449 -0.464 -0.445

Table 2: Run-time for 2000 samples for LogReg on 4 72-core Azure VMs

Data Set Loss-NPL NUTS ADVI

Adult 2m24s 2h36m 26.9s
Polish 19.0s 1h20m 3.3s
Arcene 2m20s 4h31m 54.2s
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Bayesian Sparsity-path-analysis: Genetics Dataset

Single-neucleotide polymorphisms from a genome-wide data set
[Lee et al., 2012] with n = 500, d = 50
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Figure 3: Block-like correlations of covariates x

We simulated phenotype data from y ∼ Bernoulli(σ(βT
0 x)); β0 has 5

non-zero components with the rest set to 0.
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Bayesian Sparsity-path-analysis: Genetics Dataset

We vary the scale of the Student-t prior c = b/a (same ` as before) to
visualize how the responsibility of each covariate changes with sparsity
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Figure 4: Lasso-type plot for posterior medians of non-zero β with 80% credible
intervals against log(c) from genetic dataset. NPL required 5m 24s to generate
450× 4000 posterior samples.
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Bayesian Sparsity-path-analysis: Genetics Dataset
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Figure 5: Posterior marginal KDE of β14 against log(c) from genetic dataset
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Summary

We have introduced a scalable Bayesian nonparametric learning scheme
which:

I Takes into account model misspecification

I Allows for an embarrassingly parallel sampling scheme through
optimizations

I Can tackle multimodal posteriors

Thank you! Any questions?

Come check out poster #235.
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