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`1 Regularization is Popular

High-dimensional data with `1 regularization (n << p)
Genomic Data, Matrix Completion, Deep Learning, etc.

(a) Sparse linear models (b) Sparse graphical models

(c) Matrix Completion (d) Sparse neural networks
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Concrete Example 1
Lasso

Example 1: Lasso∗ (Sparse Linear Regression)

θ̂ ∈ argmin
θ∈Ω

1

2n
‖y −Xθ‖22 + λn‖θ‖1

∗R. Tibshirani. Regression shrinkage and selection via the lasso. JRSS, Series B,1996.
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Concrete Example 2
Graphical Lasso

Example 2: Graphical Lasso∗ (Sparse Concentration Matrix)

Θ̂ ∈ argmin
Θ∈Sp++

trace(Σ̂Θ)− log det(Θ) + λn‖Θ‖1,off

where Σ̂ is a sample covariance matrix, Sp++ the symmetric and strictly positive
definite matrices, and ‖Θ‖1,off the `1-norm on the off-diagonal elements of Θ.

∗P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by minimizing l1-penalized log-determinant
divergence. EJS, 2011

Jihun Yun (KAIST) Trimmed `1 Penalty June 12, 2019 6 / 40



Concrete Example 3
Group `1 on Network Pruning Task

Example 3: Group `1
∗ (Structured Sparsity of Weight Parameters)

θ̂ ∈ argmin
θ∈Ω

L(θ;D) + λn‖θ‖G

where θ̂ is a collection of weight parameters of neural networks, L the neural
network loss (ex. softmax), and ‖θ‖G the group sparsity regularizer.

Pruning 

Synapses

Pruning 

Neurons

Before Pruning After Pruning

Figure: Encouraging group sparsity. For
example, ‖θ‖G=

∑
g∈G‖θg‖2 with each

group g.

∗W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning Structured Sparsity in Deep Neural Networks. NIPS, 2016
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Shrinkage Bias of Standard `1 Penalty

As parameter size gets larger, the shrinkage bias effect also tends to be
larger.

The `1 penalty is proportional to the size of parameters.

Despite the popularity of `1 penalty
(and also strong statistical guarantees),

Is it really good enough?
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Non-convex Regularizers
Previous Work

For amenable non-convex regularizers (such as
SCAD∗ and MCP∗∗),

. Amenable regularizer: Resembles `1 at the
origin and has vanishing derivatives at the tail.
→ coordinate-wise decomposable.

. (Loh & Wainwright)∗∗∗ provide the statistical
analysis on amenable regularizers.

What about more structurally complex regularizer?

∗J. Fan and R. Li. Variable selection via non-concave penalized likelihood and its oracle properties. Jour. Amer. Stat. Ass., 96(456):1348-1360,
December 2001.
∗∗Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics, 38(2):894-942, 2010.
∗∗∗P. Loh and M. J. Wainwright. Regularized M -estimators with non-convexity: statistical and algorithmic theory for local optima and algorithmic.

JMLR, 2015.
∗∗∗P. Loh and M. J. Wainwright. Support recovery without incoherence: A case for nonconvex regularization. The Annals of Statistics, 2017.
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Trimmed `1 Penalty
Definition

In this paper, we study the Trimmed `1 penalty.

New class of regularizers.

Definition:
For a parameter vector θ ∈ Rp, we only `1-penalize each entry except
largest h entries (We call h the trimming parameter).

Parameter (The darker color, the larger value)

Penalty-free We only penalize the smallest 𝑝 − ℎ entries.
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Trimmed `1 Penalty
First Formulation

Parameter (The darker color, the larger value)

Penalty-free We only penalize the smallest 𝑝 − ℎ entries.

We can formalize by defining the order statistics of the parameter vector
|θ(1)|> |θ(2)|> · · · > |θ(p)|, the M -estimation with the Trimmed `1 penalty is

minimize
θ∈Ω

L(θ;D) + λnR(θ;h)

where the regularizer R(θ;h) =
∑p
j=h+1|θ(j)| (sum of smallest p− h entries

in absolute values).

Importantly, the Trimmed `1 is not amenable nor coordinate-wise separable.
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M -estimation with the Trimmed `1 penalty
Second Formulation

We can rewrite the M -estimation with the Trimmed `1 penalty by
introducing additional variable w:

minimize
θ∈Ω,w∈[0,1]p

F(θ,w) := L(θ;D) + λn

p∑
j=1

wj |θj |

such that 1Tw ≥ p− h

The variable w encodes the sparsity pattern and order information of θ.
As an ideal case,

wj = 0 for largest h entries
wj = 1 for smallest p− h entries

If we set the trimming parameter h = 0, it is just a standard `1.
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M -estimation with the Trimmed `1 penalty
Second Formulation: Important Properties

minimize
θ∈Ω,w∈[0,1]p

F(θ,w) := L(θ;D) + λn

p∑
j=1

wj |θj |

such that 1Tw ≥ p− h

The objective function F is

Weighted `1-regularized if we fix w.
Linear in w with fixing θ.
However, F is non-convex in jointly (θ,w) because of coupling of θ and w.

We use this second formulation for an optimization.

Since we don’t need to sort the parameter.
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Trimmed `1 Penalty
Unit Balls Visualization

Trimmed `1 Unit balls of θ = (θ1, θ2, θ3) in the 3-dimensional space.

𝜃1

𝜃2

𝜃3

ℎ = 0

𝜃1

𝜃2

𝜃3

ℎ = 1

𝜃1

𝜃2

𝜃3

ℎ = 2

For h = 0, the shape is the same as standard `1 unit ball.

For h > 0, the penalty could be unbounded.

Since the largest h entries are not penalized, the unit ball could extend to
infinity in these directions.
As h increases, the penalty would be more complicated.
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Statistical Analysis: Key Assumptions and Quantity

Assumptions:

(C1) The loss L is differentiable and convex.

(C2) Restricted Strong Convexity on θ: Let D be the set of all possible
error vectors for θ. Then, for all θ − θ∗ ∈ D,

〈∇L(θ∗,∆)−∇L(θ∗),∆〉 ≥ κl‖∆‖22−τ1
log p

n
‖∆‖21,

where κl is a “curvature” parameter, and τ1 a “tolerance”.

Allowing a small loss difference to be translated to a small error θ − θ∗.

RSC condition is a standard one in this line of work.

Quantity:

Let Q̂ =
∫ 1

0
∇2L(θ∗ + t(θ̂ − θ∗))dt.
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Statistical Analysis
Theorem 1: General `∞-error Bound and Variable Selection

Consider an M -estimation problem with the Trimmed `1 penalty.

Under (C1)&(C2) and standard conditions, for any local minimum θ̃, we have

1 For every pair j1 ∈ S, j2 ∈ Sc, we have |θ̃j1 | > |θ̃j2 |

True Parameter

Estimated Parameter
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Statistical Analysis
Theorem 1: General `∞-error Bound and Variable Selection

1 For every pair j1 ∈ S, j2 ∈ Sc, we have |θ̃j1 |> |θ̃j2 |
2 If h < k, all j ∈ Sc are successfully estimated as zero and

‖θ̃ − θ∗‖∞≤
∥∥∥(Q̂SS)−1∇L(θ∗)S

∥∥∥
∞

+ λn

∣∣∣∣∣∣∣∣∣(Q̂SS)−1
∣∣∣∣∣∣∣∣∣
∞

True Parameter

Zero!!

Estimated Parameter
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Statistical Analysis
Theorem 2: General `2-error Bound

Theorem 2
Consider an M -estimation problem with Trimmed `1 regularization where all
conditions in Theorem 1 hold.

For any local minimum θ̃, the parameter estimation error in terms of `2-norm
is upper bounded as:

‖θ̃ − θ∗‖2=

{
Cλn

(√
k/2 +

√
k − h

)
if h < k

Cλn
√
h/2 otherwise

From our bound, h = k is the best case!
We can choose h � k via cross-validation.

Table: `2-error bound for different h values.

h < k h = k h > k

‖θ̃ − θ∗‖2 Cλn(
√
k
2

+
√
k − h) Cλn

√
k
2

Cλn
√
h
2
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Statistical Analysis
Remarks: Other alternative penalties vs. Trimmed `1

‖θ̃ − θ∗‖2=

{
Cλn

(√
k/2 +

√
k − h

)
if h < k

Cλn
√
h/2 otherwise

ρλ(t): (µ, γ)-amenable

ρλ(t) + 1
2µt

2 is convex.

ρ′λ(t) = 0 for |t|> γ.

Table: `2-error bound comparison with universal constant c0 in sub-Gaussian tail bounds.

Standard `1 (h = 0) (µ, γ)-amenable Trimmed `1 (h = k)

‖θ̃ − θ∗‖2
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µ
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k
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√
k

2
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2

Trimmed `1 can achieve three times smaller bound than standard one.
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Also, we have a smaller bound than non-convex regularizers since
(µ, γ)-amenable regularizers have (possibly large) µ in the denominator.
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Statistical Analysis
Corollary 1: General `∞-error Bound for Linear Regression

Consider a linear regression problem with sub-Gaussian error ε.

Under standard conditions as in Theorem 1 and incoherence condition on
sample covariance, with high probability, any local minimum θ̃ satisfies

① The absolute value of 

relevant features is

always larger than non-relevant features.

② If we set the trimming parameter ℎ smaller than 

true sparsity level 𝑘, 

all non-relevant parameters are estimated as zero.

③ If we set ℎ larger than true sparsity level 𝑘, 

at least the smallest 𝑝 − ℎ entries 

are estimated as zero.
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Optimization for Trimmed `1 Regularized Program

For an optimization, we use our second formulation of trimmed
regularization problem

minimize
θ∈Ω,w∈[0,1]p

F(θ,w) := L(θ;D) + λ

p∑
j=1

wj |θj | s.t. 1Tw ≥ p− h

We update (θ,w) in an alternating manner.

θk+1 ← proxηλR(·,wk)[θ
k − η∇θL(θk)]

wk+1 ← projS [wk − τr(θk+1)]

Fixing w, prox operator is weighted `1 norm.
By fixing θ, the objective function F is linear in w.
projS is a projection onto the constraint set S = {w ∈ [0, 1]p | 1Tw = p−h}.
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Optimization: Comparison with DC-based Approach

Convergence history our algorithm vs. Algorithm 2 of (Khamaru &
Wainwright, 2018)∗.

Algorithm 2 of (Khamaru & Wainwright, 2018) is an optimization method for
(non-convex and non-smooth) objective functions of the form difference of
convex functions (f := g + φ− h).
Trimmed regularized problem can be formulated as a DC.
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Figure: Algorithm comparison with λ ∈ {0.5, 5, 10, 20}.
∗K. Khamaru and M. J. Wainwright. Convergence guarantees for a class of non-convex and non-smooth optimization problems. ICML, 2018
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Simulation Experiments
Incoherent Case: Support Recovery

Scenario 1: Incoherence condition is satisfied
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Probability of successful support recovery for Trimmed Lasso, SCAD, MCP,
and standard Lasso with (p, k) = (128, 8), (256, 16), (512, 32).
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Simulation Experiments
Incoherent Case: Stationary & log `2-error Comparison

Scenario 1: Incoherence condition is satisfied
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(Left) 50 random initializations for a setting with (n, p, k) = (160, 256, 16).

(Right) log `2-error comparison.
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Simulation Experiments
Nonincoherent Case: Support Recovery

Scenario 2: Incoherence condition violated

Note that we need an incoherence condition in our Corollary 1.
Interestingly, the Trimmed Lasso outperforms all the other comparison
regularizers even in this regime.
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Simulation Experiments
Nonincoherent Case: Stationary & log `2-error Comparison

Scenario 2: Incoherence condition violated

0 500 1000
Iteration Count, t

0

2

4

lo
g(
‖β

t
−
β
∗ ‖

2)

log `2-error

0 20000 40000
Iteration Count, t

1

2

3

lo
g(
‖β

t
−
β
∗ ‖

2)

Trimmed `1

SCAD

MCP

(Left) 50 random initializations for a setting with (n, p, k) = (160, 256, 16).

(Right) log `2-error comparison.
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Simulation Experiments
Nonincoherent Case: Stationary

Scenario 3

(Left) True signals and regularization parameter λ are both small (Small
regime)
Investigating the choice of the trimming parameter h (Middle: Incoherent
case, Right: Non-incoherent case).
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Applications to Deep Learning 1
Input Structure Recovery of Compact Neural Networks

We apply trimmed regularization to recover the weight structure of neural
networks as parameter support recovery.

Motivated by the recent work of Oymak (2018)∗, we consider

𝑜

𝑊∗

input

dimension

𝑝 = 80
hidden

dimension

ℎ = 20

𝑦

The regression model,
yi = oTReLU(W ∗xi) with
o = 1.

Each hidden node is connected
to only 4 input features.

∗ Samet Oymak. Learning Compact Neural Networks with Regularization. ICML, 2018.

Jihun Yun (KAIST) Trimmed `1 Penalty June 12, 2019 32 / 40



Applications to Deep Learning 1
Input Structure Recovery of Compact Neural Networks: Results

With good initialization (small perturbation from true weight)

With random initialization
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Applications to Deep Learning 2: Pruning Deep Networks

Pruning 

Synapses

Pruning 

Neurons

Before Pruning After Pruning

Pruning neurons is more computationally efficient than edge-wise pruning.
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Applications to Deep Learning: Pruning Deep Networks
Trimmed Group `1 Regularization on Deep Networks

To encourage group sparsity on neural networks, we consider two cases:

Neuron sparsity (for fully-connected layers)

Let θl ∈ Rnin×nout be a weight parameter, then we can enforce group-wise
sparsity via Trimmed group `1 penalty as

Rl(θl,w) = λl

nin∑
j=1

wj

√
θ2j,1 + θ2j,2 + · · ·+ θj,nout

Activation map sparsity (for convolutional layers)

Similarly, let θl ∈ RCout×Cin×H×W be a weight parameter, then

Rl(θ,w) = λl

Cout∑
j=1

wj

√∑
m,n,k

θ2j,m,n,k

for all possible indices (m,n, k).

with the constraint 1Tw = nin − hl or Cout − hl respectively.
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Applications to Deep Learning: Pruning Deep Networks
Results on MNIST dataset

Comparison with vanilla group `1 penalty vs. Trimmed group `1 penalty on
LeNet-300-100 structure
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Applications to Deep Learning: Pruning Deep Networks
Bayesian Neural Networks with Trimmed `1 Regularization

Most modern algorithms for network pruning are based on Bayesian
variational framework. We propose a Bayesian neural network with
Trimmed `1 regularization regarding only θ as Bayesian.

By relationship between Bayesian neural networks and variational
dropout, we choose qθ,α(θi,j) = N (φi,j , αi,jφ

2
i,j) as a variational

distribution.

Combined with Trimmed `1 regularization, the objective is

Eqφ,α(θ)

[
− L(W;D)

]
+ KL(qφ,α(W)‖p(W))︸ ︷︷ ︸

ELBO

+Eqφ,α(θ)

[ L+1∑
l=1

λlRl(θl,wl)
]

︸ ︷︷ ︸
Expected Trimmed group `1 penalty
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Applications to Deep Learning: Pruning Deep Networks
Results on MNIST dataset (Cont’ d)

With Bayesian extensions on LeNet-300-100
We compare with a smoothed `0-norm under Bayesian variational framework
proposed by Louizos et al. (2018)∗

With Bayesian extensions on LeNet-5-Caffe

∗Louizos et al. Learning Sparse Neural Networks through `0 Regularization. ICLR, 2018
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Concluding Remarks

High-dimensional M-estimators with Trimmed `1 penalty: Alleviate the
bias incurred by the vanilla `1 penalty by leaving the h largest parameter
entries penalty-free.

Theoretical Results on support recovery and `2-error hold for any local
optima and are competitive with other non-convex regularizers.

Simulation experiments demonstrated the value of approach compared to
Lasso and non-convex penalties.

Future work:

Trimming for other standard regularizers beyond sparsity
Bypassing incoherence condition in corollaries
More experiments and theories when RSC does not hold
Investigating the use of trimmed regularization in deep models.
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THANK YOU!
Any Questions?

Poster Session at Pacific Ballroom #186
6:30pm – 9:00pm
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