Trimming the ℓ_1 Regularizer: Statistical Analysis, Optimization, and Applications to Deep Learning

Jihun Yun¹, Peng Zheng², Eunho Yang^{1,3}, Aurélie C. Lozano⁴, Aleksandr Aravkin²

¹KAIST ²University of Washington ³AITRICS ⁴IBM T.J. Watson Research Center

arcprime@kaist.ac.kr

International Conference on Machine Learning June 12, 2019

Introduction and Setup

- 2 Statistical Analysis
- Optimization
- 4 Experiments & Applications to Deep Learning

・ロト ・日下・ ・ ヨト・

Introduction and Setup

2 Statistical Analysis

3 Optimization

4 Experiments & Applications to Deep Learning

・ロト ・日下・ ・ ヨト・

ℓ_1 Regularization is Popular

• High-dimensional data with ℓ_1 regularization ($n \ll p$)

• Genomic Data, Matrix Completion, Deep Learning, etc.

Jihun Yun (KAIST)

Trimmed ℓ_1 Penalty

June 12, 2019 4 / 40

Concrete Example 1

Lasso

Example 1: Lasso* (Sparse Linear Regression)

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Omega} \ \frac{1}{2n} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\theta}\|_2^2 + \lambda_n \|\boldsymbol{\theta}\|_1$$

* R. Tibshirani. Regression shrinkage and selection via the lasso. JRSS, Series B,1996.

Jihun Yun (KAIST)

・ロト ・日下・ ・ ヨト・

Concrete Example 2

Graphical Lasso

Example 2: Graphical Lasso* (Sparse Concentration Matrix)

$$\widehat{\Theta} \in \operatorname*{argmin}_{\Theta \in \mathcal{S}_{++}^p} \operatorname{trace}(\widehat{\Sigma}\Theta) - \log \det(\Theta) + \lambda_n \|\Theta\|_{1, \mathrm{off}}$$

where $\widehat{\Sigma}$ is a sample covariance matrix, \mathcal{S}_{++}^p the symmetric and strictly positive definite matrices, and $\|\Theta\|_{1,\text{off}}$ the ℓ_1 -norm on the off-diagonal elements of Θ .

*P. Ravikumar, M. J. Wainwright, G. Raskutti, and B. Yu. High-dimensional covariance estimation by minimizing 11-penalized log-determinant divergence. EJS, 2011

Concrete Example 3

Group ℓ_1 on Network Pruning Task

Example 3: Group ℓ_1^* (Structured Sparsity of Weight Parameters)

$$\widehat{\boldsymbol{\theta}} \in \operatorname*{argmin}_{\boldsymbol{\theta} \in \Omega} \ \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda_n \|\boldsymbol{\theta}\|_{\mathcal{G}}$$

where $\hat{\theta}$ is a collection of weight parameters of neural networks, \mathcal{L} the neural network loss (ex. softmax), and $\|\theta\|_{\mathcal{G}}$ the group sparsity regularizer.

* W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning Structured Sparsity in Deep Neural Networks. NIPS, 2016

(日) (四) (日) (日) (日)

- As parameter size gets larger, the shrinkage bias effect also tends to be larger.
 - The ℓ_1 penalty is proportional to the size of parameters.

Despite the popularity of ℓ_1 penalty (and also strong statistical guarantees), Is it really good enough?

A D F A A F F A

Non-convex Regularizers

Previous Work

- For *amenable* non-convex regularizers (such as SCAD* and MCP**),
 - ▷ Amenable regularizer: Resembles l₁ at the origin and has vanishing derivatives at the tail.
 → coordinate-wise decomposable.
 - (Loh & Wainwright)*** provide the statistical analysis on amenable regularizers.

Non-convex Regularizers

Previous Work

- For *amenable* non-convex regularizers (such as SCAD* and MCP**),
 - ▷ Amenable regularizer: Resembles l₁ at the origin and has vanishing derivatives at the tail.
 → coordinate-wise decomposable.
 - ▷ (Loh & Wainwright)*** provide the statistical analysis on amenable regularizers.

イロト イヨト イヨト イヨ

What about more structurally complex regularizer?

*** P. Loh and M. J. Wainwright. Support recovery without incoherence: A case for nonconvex regularization. The Annals of Statistics, 2017.

^{*} J. Fan and R. Li. Variable selection via non-concave penalized likelihood and its oracle properties. Jour. Amer. Stat. Ass., 96(456):1348-1360, December 2001.

^{**} Cun-Hui Zhang et al. Nearly unbiased variable selection under minimax concave penalty. The Annals of statistics, 38(2):894-942, 2010.

^{***} P. Loh and M. J. Wainwright. Regularized M-estimators with non-convexity: statistical and algorithmic theory for local optima and algorithmic. JMLR, 2015.

Definition

- In this paper, we study the Trimmed ℓ_1 penalty.
 - New class of regularizers.

メロト メタト メヨト メヨト

- In this paper, we study the Trimmed ℓ_1 penalty.
 - New class of regularizers.

• Definition:

For a parameter vector $\theta \in \mathbb{R}^p$, we only ℓ_1 -penalize each entry except largest h entries (We call h the trimming parameter).

<ロト < 回 > < 回 > < 回 > < 回 >

- In this paper, we study the Trimmed ℓ_1 penalty.
 - New class of regularizers.

• Definition:

For a parameter vector $\theta \in \mathbb{R}^p$, we only ℓ_1 -penalize each entry except largest h entries (We call h the trimming parameter).

First Formulation

• We can *formalize* by defining the order statistics of the parameter vector $|\theta_{(1)}| > |\theta_{(2)}| > \cdots > |\theta_{(p)}|$, the *M*-estimation with the Trimmed ℓ_1 penalty is

$$\underset{\boldsymbol{\theta}\in\Omega}{\operatorname{minimize}} \ \mathcal{L}(\boldsymbol{\theta};\mathcal{D}) + \lambda_n \mathcal{R}(\boldsymbol{\theta};h)$$

where the regularizer $\mathcal{R}(\theta; h) = \sum_{j=h+1}^{p} |\theta_{(j)}|$ (sum of smallest p - h entries in absolute values).

• Importantly, the Trimmed ℓ_1 is not amenable nor coordinate-wise separable.

イロト イヨト イヨト イヨ

M-estimation with the Trimmed ℓ_1 penalty $_{\text{Second Formulation}}$

• We can rewrite the *M*-estimation with the Trimmed ℓ_1 penalty by introducing additional variable *w*:

$$\begin{array}{l} \underset{\boldsymbol{\theta} \in \Omega, \boldsymbol{w} \in [0,1]^p}{\text{minimize}} \ \mathcal{F}(\boldsymbol{\theta}, \boldsymbol{w}) \coloneqq \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda_n \sum_{j=1}^p w_j |\theta_j| \\ \\ \text{such that } \mathbf{1}^T \boldsymbol{w} \geq p - h \end{array}$$

イロト イ団ト イヨト イヨ

M-estimation with the Trimmed ℓ_1 penalty $_{\text{Second Formulation}}$

• We can rewrite the *M*-estimation with the Trimmed ℓ_1 penalty by introducing additional variable *w*:

$$\begin{array}{l} \underset{\boldsymbol{\theta} \in \Omega, \boldsymbol{w} \in [0,1]^p}{\text{minimize}} \ \mathcal{F}(\boldsymbol{\theta}, \boldsymbol{w}) \coloneqq \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda_n \sum_{j=1}^p w_j |\theta_j| \\ \\ \text{such that } \mathbf{1}^T \boldsymbol{w} \geq p - h \end{array}$$

- The variable w encodes the sparsity pattern and order information of θ . As an ideal case,
 - $w_j = 0$ for largest h entries
 - $w_j = 1$ for smallest p h entries

イロト イヨト イヨト イヨ

M-estimation with the Trimmed ℓ_1 penalty $_{\text{Second Formulation}}$

• We can rewrite the *M*-estimation with the Trimmed ℓ_1 penalty by introducing additional variable *w*:

$$\begin{array}{l} \underset{\boldsymbol{\theta} \in \Omega, \boldsymbol{w} \in [0,1]^p}{\text{minimize}} \ \mathcal{F}(\boldsymbol{\theta}, \boldsymbol{w}) \coloneqq \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda_n \sum_{j=1}^p w_j |\theta_j| \\ \\ \text{such that } \mathbf{1}^T \boldsymbol{w} \geq p - h \end{array}$$

- The variable w encodes the sparsity pattern and order information of θ . As an ideal case,
 - $w_j = 0$ for largest h entries
 - $w_j = 1$ for smallest p h entries
- If we set the trimming parameter h = 0, it is just a standard ℓ_1 .

イロト イヨト イヨト イヨ

M-estimation with the Trimmed ℓ_1 penalty

Second Formulation: Important Properties

$$\begin{array}{l} \underset{\boldsymbol{\theta} \in \Omega, \boldsymbol{w} \in [0,1]^p}{\text{minimize}} \ \mathcal{F}(\boldsymbol{\theta}, \boldsymbol{w}) \coloneqq \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda_n \sum_{j=1}^p w_j |\theta_j| \\ \\ \text{such that } \mathbf{1}^T \boldsymbol{w} \geq p - h \end{array}$$

- \bullet The objective function ${\cal F}$ is
 - Weighted ℓ_1 -regularized if we fix w.
 - Linear in w with fixing θ .
 - However, \mathcal{F} is **non-convex** in jointly (θ, w) because of coupling of θ and w.
- We use this second formulation for an optimization.
 - Since we don't need to sort the parameter.

イロト イ団ト イヨト イヨ

Unit Balls Visualization

• Trimmed ℓ_1 Unit balls of $\theta = (\theta_1, \theta_2, \theta_3)$ in the 3-dimensional space.

メロト メタト メヨト メヨ

Unit Balls Visualization

• Trimmed ℓ_1 Unit balls of $\theta = (\theta_1, \theta_2, \theta_3)$ in the 3-dimensional space.

・ロト ・日下・ ・ ヨト・

Unit Balls Visualization

• Trimmed ℓ_1 Unit balls of $\theta = (\theta_1, \theta_2, \theta_3)$ in the 3-dimensional space.

Unit Balls Visualization

• Trimmed ℓ_1 Unit balls of $\theta = (\theta_1, \theta_2, \theta_3)$ in the 3-dimensional space.

・ロト ・日下・ ・ ヨト・

Unit Balls Visualization

• Trimmed ℓ_1 Unit balls of $\theta = (\theta_1, \theta_2, \theta_3)$ in the 3-dimensional space.

- For h = 0, the shape is the same as standard ℓ_1 unit ball.
- For h > 0, the penalty could be unbounded.
 - Since the largest *h* entries are not penalized, the unit ball could extend to infinity in these directions.
 - $\bullet\,$ As h increases, the penalty would be more complicated.

イロト イヨト イヨト イ

Introduction and Setup

2 Statistical Analysis

Optimization

4 Experiments & Applications to Deep Learning

・ロト ・日下・ ・ ヨト・

Assumptions:

(C1) The loss \mathcal{L} is differentiable and convex.

(C2) Restricted Strong Convexity on θ : Let \mathbb{D} be the set of all possible error vectors for θ . Then, for all $\theta - \theta^* \in \mathbb{D}$,

$$\langle \nabla \mathcal{L}(\boldsymbol{\theta}^*, \Delta) - \nabla \mathcal{L}(\boldsymbol{\theta}^*), \Delta \rangle \geq \kappa_l \|\Delta\|_2^2 - \tau_1 \frac{\log p}{n} \|\Delta\|_1^2,$$

where κ_l is a "curvature" parameter, and τ_1 a "tolerance".

- Allowing a small loss difference to be translated to a small error $\theta \theta^*$.
- RSC condition is a standard one in this line of work.

Quantity:

• Let
$$\widehat{Q} = \int_0^1 \nabla^2 \mathcal{L}(\boldsymbol{\theta}^* + t(\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}^*)) dt.$$

• • • • • • • • • • • • •

Statistical Analysis Theorem 1: General ℓ_{∞} -error Bound and Variable Selection

- Consider an M-estimation problem with the Trimmed ℓ_1 penalty.
- Under (C1)&(C2) and standard conditions, for *any* local minimum $\tilde{\theta}$, we have
 - For every pair $j_1 \in S$, $j_2 \in S^c$, we have $|\tilde{\theta}_{j_1}| > |\tilde{\theta}_{j_2}|$

・ロト ・日下・ ・ ヨト・

Statistical Analysis Theorem 1: General ℓ_{∞} -error Bound and Variable Selection

- Consider an M-estimation problem with the Trimmed ℓ_1 penalty.
- Under (C1)&(C2) and standard conditions, for any local minimum $\tilde{\theta}$, we have
 - For every pair $j_1 \in S$, $j_2 \in S^c$, we have $|\tilde{\theta}_{j_1}| > |\tilde{\theta}_{j_2}|$

イロト イ団ト イヨト イヨ

Theorem 1: General ℓ_{∞} -error Bound and Variable Selection

• For every pair $j_1 \in S$, $j_2 \in S^c$, we have $|\tilde{\theta}_{j_1}| > |\tilde{\theta}_{j_2}|$ • If h < k, all $j \in S^c$ are successfully estimated as zero and

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{\infty} \leq \left\| (\widehat{Q}_{SS})^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}^*)_S \right\|_{\infty} + \lambda_n \left\| (\widehat{Q}_{SS})^{-1} \right\|_{\infty}$$

イロト イ団ト イヨト イヨ

Theorem 1: General ℓ_{∞} -error Bound and Variable Selection

• For every pair $j_1 \in S$, $j_2 \in S^c$, we have $|\tilde{\theta}_{j_1}| > |\tilde{\theta}_{j_2}|$ • If h < k, all $j \in S^c$ are successfully estimated as zero and

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{\infty} \leq \left\| (\widehat{Q}_{SS})^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}^*)_S \right\|_{\infty} + \lambda_n \left\| (\widehat{Q}_{SS})^{-1} \right\|_{\infty}$$

イロト イヨト イヨト イヨ

Theorem 1: General ℓ_{∞} -error Bound and Variable Selection

() For every pair $j_1 \in S$, $j_2 \in S^c$, we have $|\tilde{\theta}_{j_1}| > |\tilde{\theta}_{j_2}|$ **()** If h < k, all $j \in S^c$ are successfully estimated as zero and

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{\infty} \leq \left\| (\widehat{Q}_{SS})^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}^*)_S \right\|_{\infty} + \lambda_n \left\| (\widehat{Q}_{SS})^{-1} \right\|_{\infty}$$

● If $h \ge k$, at least the smallest (in absolute) p - h entries in S^c are exactly zero and $\|\tilde{\theta} - \theta\|_{\infty} \le \|(\hat{Q}_{\hat{U}\hat{U}})^{-1} \nabla \mathcal{L}(\theta^*)_{\hat{U}}\|_{\infty}$ where \hat{U} is defined as the h largest absolute entries of $\tilde{\theta}$ including S.

A D F A A F F A

Theorem 1: General ℓ_{∞} -error Bound and Variable Selection

() For every pair $j_1 \in S$, $j_2 \in S^c$, we have $|\theta_{j_1}| > |\theta_{j_2}|$ **(a)** If h < k, all $j \in S^c$ are successfully estimated as zero and

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_{\infty} \leq \left\| (\widehat{Q}_{SS})^{-1} \nabla \mathcal{L}(\boldsymbol{\theta}^*)_S \right\|_{\infty} + \lambda_n \left\| (\widehat{Q}_{SS})^{-1} \right\|_{\infty}$$

● If $h \ge k$, at least the smallest (in absolute) p - h entries in S^c are exactly zero and $\|\tilde{\theta} - \theta\|_{\infty} \le \|(\hat{Q}_{\hat{U}\hat{U}})^{-1} \nabla \mathcal{L}(\theta^*)_{\hat{U}}\|_{\infty}$ where \hat{U} is defined as the h largest absolute entries of $\tilde{\theta}$ including S.

Theorem 2: General ℓ_2 -error Bound

Theorem 2

- Consider an M-estimation problem with Trimmed ℓ_1 regularization where all conditions in Theorem 1 hold.
- For any local minimum $\hat{\theta}$, the parameter estimation error in terms of ℓ_2 -norm is upper bounded as:

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 = \begin{cases} C\lambda_n \left(\sqrt{k}/2 + \sqrt{k-h}\right) & \text{ if } h < k\\ C\lambda_n \sqrt{h}/2 & \text{ otherwise} \end{cases}$$

• • • • • • • • • • •

Theorem 2: General ℓ_2 -error Bound

Theorem 2

- Consider an M-estimation problem with Trimmed ℓ_1 regularization where all conditions in Theorem 1 hold.
- For any local minimum $\tilde{\theta}$, the parameter estimation error in terms of ℓ_2 -norm is upper bounded as:

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 = \begin{cases} C\lambda_n \left(\sqrt{k}/2 + \sqrt{k-h}\right) & \text{ if } h < k \\ C\lambda_n \sqrt{h}/2 & \text{ otherwise} \end{cases}$$

• From our bound, h = k is the best case!

• We can choose $h \asymp k$ via cross-validation.

Table: ℓ_2 -error bound for different h values.

Remarks: Other alternative penalties vs. Trimmed ℓ_1

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 = \begin{cases} C\lambda_n \left(\sqrt{k}/2 + \sqrt{k-h}\right) & \text{ if } h < k \\ C\lambda_n \sqrt{h}/2 & \text{ otherwise} \end{cases}$$

• $\rho_{\lambda}(t)$: (μ, γ) -amenable • $\rho_{\lambda}(t) + \frac{1}{2}\mu t^2$ is convex. • $\rho'_{\lambda}(t) = 0$ for $|t| > \gamma$.

< k

*ロト *個ト *注ト *注・

Remarks: Other alternative penalties vs. Trimmed ℓ_1

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 = \begin{cases} C\lambda_n \left(\sqrt{k}/2 + \sqrt{k-h}\right) & \text{if } h < k \\ C\lambda_n \sqrt{h}/2 & \text{otherwise} \end{cases} \stackrel{\bullet}{\bullet} \rho_{\lambda}(t) \colon (\boldsymbol{\mu}, \gamma) \text{-amenable} \\ \bullet \rho_{\lambda}(t) + \frac{1}{2}\mu t^2 \text{ is convex.} \\ \bullet \rho_{\lambda}'(t) = 0 \text{ for } |t| > \gamma. \end{cases}$$

Table: ℓ_2 -error bound comparison with universal constant c_0 in sub-Gaussian tail bounds.

	Standard ℓ_1 ($h=0$)	(μ,γ) -amenable	Trimmed ℓ_1 $(h=k)$
$\ \widetilde{oldsymbol{ heta}}-oldsymbol{ heta}^*\ _2$	$\frac{3c_0}{\kappa_l}\frac{\lambda_n\sqrt{k}}{2}$	$\frac{c_0}{\kappa_l - \frac{3}{2}\mu} \frac{\lambda_n \sqrt{k}}{2}$	$rac{c_0}{\kappa_l}rac{\lambda_n\sqrt{k}}{2}$

メロト メタト メヨト メヨト

Remarks: Other alternative penalties vs. Trimmed ℓ_1

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 = \begin{cases} C\lambda_n \left(\sqrt{k}/2 + \sqrt{k-h}\right) & \text{if } h < k \\ C\lambda_n \sqrt{h}/2 & \text{otherwise} \end{cases} \stackrel{\bullet}{\bullet} \rho_{\lambda}(t) \colon (\boldsymbol{\mu}, \gamma) \text{-amenable} \\ \bullet \rho_{\lambda}(t) + \frac{1}{2}\mu t^2 \text{ is convex.} \\ \bullet \rho_{\lambda}'(t) = 0 \text{ for } |t| > \gamma. \end{cases}$$

Table: ℓ_2 -error bound comparison with universal constant c_0 in sub-Gaussian tail bounds.

	Standard ℓ_1 ($h=0$)	(μ,γ) -amenable	Trimmed ℓ_1 ($h=k$)
$\ \widetilde{oldsymbol{ heta}}-oldsymbol{ heta}^*\ _2$	$\frac{3c_0}{\kappa_l}\frac{\lambda_n\sqrt{k}}{2}$	$\frac{c_0}{\kappa_l-\frac{3}{2}\mu}\frac{\lambda_n\sqrt{k}}{2}$	$\frac{c_0}{\kappa_l}\frac{\lambda_n\sqrt{k}}{2}$

• Trimmed ℓ_1 can achieve three times smaller bound than standard one.

< □ > < □ > < □ > < □ > < □ >

Remarks: Other alternative penalties vs. Trimmed ℓ_1

$$\|\widetilde{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|_2 = \begin{cases} C\lambda_n \left(\sqrt{k}/2 + \sqrt{k-h}\right) & \text{if } h < k \\ C\lambda_n \sqrt{h}/2 & \text{otherwise} \end{cases} \stackrel{\bullet}{\bullet} \rho_{\lambda}(t) \colon (\boldsymbol{\mu}, \gamma) \text{-amenable} \\ \bullet \rho_{\lambda}(t) + \frac{1}{2}\mu t^2 \text{ is convex.} \\ \bullet \rho_{\lambda}'(t) = 0 \text{ for } |t| > \gamma. \end{cases}$$

Table: ℓ_2 -error bound comparison with universal constant c_0 in sub-Gaussian tail bounds.

	Standard ℓ_1 ($h=0$)	(μ,γ) -amenable	Trimmed ℓ_1 $(h=k)$
$\ \widetilde{oldsymbol{ heta}}-oldsymbol{ heta}^*\ _2$	$\frac{3c_0}{\kappa_l} \frac{\lambda_n \sqrt{k}}{2}$	$\frac{c_0}{\kappa_l - \frac{3}{2}\mu} \frac{\lambda_n \sqrt{k}}{2}$	$\frac{c_0}{\kappa_l}\frac{\lambda_n\sqrt{k}}{2}$

• Also, we have a smaller bound than non-convex regularizers since (μ, γ) -amenable regularizers have (possibly large) μ in the denominator.

< □ > < □ > < □ > < □ > < □ >

Statistical Analysis Corollary 1: General ℓ_{∞} -error Bound for Linear Regression

- Consider a linear regression problem with sub-Gaussian error ϵ .
- Under standard conditions as in **Theorem 1** and incoherence condition on sample covariance, with high probability, *any* local minimum $\tilde{\theta}$ satisfies

< □ > < 同 > < 回 > < Ξ > < Ξ

Introduction and Setup

2 Statistical Analysis

4 Experiments & Applications to Deep Learning

・ロト ・日下・ ・ ヨト・

Optimization for Trimmed ℓ_1 Regularized Program

• For an optimization, we use our **second formulation** of trimmed regularization problem

$$\min_{\boldsymbol{\theta} \in \Omega, \boldsymbol{w} \in [0,1]^p} \mathcal{F}(\boldsymbol{\theta}, \boldsymbol{w}) \coloneqq \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda \sum_{j=1}^p w_j |\theta_j| \quad \text{s.t.} \quad \mathbf{1}^T \boldsymbol{w} \ge p - h$$

・ロト ・ 日 ・ ・ ヨ ト ・

Optimization for Trimmed ℓ_1 Regularized Program

• For an optimization, we use our **second formulation** of trimmed regularization problem

$$\min_{\boldsymbol{\theta} \in \Omega, \boldsymbol{w} \in [0,1]^p} \mathcal{F}(\boldsymbol{\theta}, \boldsymbol{w}) \coloneqq \mathcal{L}(\boldsymbol{\theta}; \mathcal{D}) + \lambda \sum_{j=1}^p w_j |\theta_j| \quad \text{s.t.} \quad \mathbf{1}^T \boldsymbol{w} \ge p - h$$

• We update (θ, w) in an alternating manner.

$$\begin{aligned} & \boldsymbol{\theta}^{k+1} \leftarrow \mathrm{prox}_{\eta \lambda \mathcal{R}(\cdot, \boldsymbol{w}^k)} [\boldsymbol{\theta}^k - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}^k)] \\ & \boldsymbol{w}^{k+1} \leftarrow \mathrm{proj}_{\mathcal{S}} [\boldsymbol{w}^k - \tau \boldsymbol{r}(\boldsymbol{\theta}^{k+1})] \end{aligned}$$

- Fixing w, prox operator is weighted ℓ_1 norm.
- By fixing θ , the objective function \mathcal{F} is linear in w.
- proj_S is a projection onto the constraint set S = {w ∈ [0,1]^p | 1^Tw = p − h}.

イロト イヨト イヨト イヨ

Optimization: Comparison with DC-based Approach

- Convergence history our algorithm vs. Algorithm 2 of (Khamaru & Wainwright, 2018)*.
 - Algorithm 2 of (Khamaru & Wainwright, 2018) is an optimization method for (non-convex and non-smooth) objective functions of the form difference of convex functions ($f := g + \phi h$).
 - Trimmed regularized problem can be formulated as a DC.

Figure: Algorithm comparison with $\lambda \in \{0.5, 5, 10, 20\}$.

*K. Khamaru and M. J. Wainwright. Convergence guarantees for a class of non-convex and non-smooth optimization problems. ICML, 2018

Jihun	Yun ((KAIST)
		/

• • • • • • • • • • • •

Introduction and Setup

- 2 Statistical Analysis
- 3 Optimization

・ロト ・日下・ ・ ヨト・

Incoherent Case: Support Recovery

• Scenario 1: Incoherence condition is satisfied

• Probability of successful support recovery for Trimmed Lasso, SCAD, MCP, and standard Lasso with (p,k) = (128,8), (256,16), (512,32).

Image: A matched a matc

Incoherent Case: Stationary & $\log \ell_2$ -error Comparison

• Scenario 1: Incoherence condition is satisfied

(Left) 50 random initializations for a setting with (n, p, k) = (160, 256, 16).
(Right) log ℓ₂-error comparison.

・ロト ・日下・ ・ ヨト・

Nonincoherent Case: Support Recovery

- Scenario 2: Incoherence condition violated
 - Note that we need an incoherence condition in our Corollary 1.
 - Interestingly, the Trimmed Lasso outperforms all the other comparison regularizers even in this regime.

• Probability of successful support recovery for Trimmed Lasso, SCAD, MCP, and standard Lasso with (p,k) = (128,8), (256,16), (512,32).

A B A B A B A

Nonincoherent Case: Stationary & $\log \ell_2$ -error Comparison

• Scenario 2: Incoherence condition violated

- (Left) 50 random initializations for a setting with (n, p, k) = (160, 256, 16).
- (**Right**) $\log \ell_2$ -error comparison.

イロト イヨト イヨト イ

Nonincoherent Case: Stationary

- Scenario 3
 - (Left) True signals and regularization parameter λ are both small (Small regime)
 - Investigating the choice of the trimming parameter *h* (Middle: Incoherent case, **Right**: Non-incoherent case).

< (T) >

Input Structure Recovery of Compact Neural Networks

- We apply trimmed regularization to recover the weight structure of neural networks as parameter support recovery.
- Motivated by the recent work of Oymak (2018)*, we consider

- The regression model, $y_i = \boldsymbol{o}^T \operatorname{ReLU}(\boldsymbol{W}^* \boldsymbol{x}_i)$ with $\boldsymbol{o} = \boldsymbol{1}$.
- Each hidden node is connected to only 4 input features.

• • • • • • • • • • •

* Samet Oymak. Learning Compact Neural Networks with Regularization. ICML, 2018.

Applications to Deep Learning 1

Input Structure Recovery of Compact Neural Networks: Results

• With good initialization (small perturbation from true weight)

• With random initialization

Jihun Yun (KAIST)

Applications to Deep Learning 2: Pruning Deep Networks

• **Pruning neurons** is more computationally efficient than edge-wise pruning.

libura	Vun	(LAICT)	
Jilluli	Tun	(10/131)	

イロト イヨト イヨト イヨ

Trimmed Group ℓ_1 Regularization on Deep Networks

To encourage group sparsity on neural networks, we consider two cases:

- Neuron sparsity (for fully-connected layers)
 - Let $\theta_l \in \mathbb{R}^{n_{\text{in}} \times n_{\text{out}}}$ be a weight parameter, then we can enforce group-wise sparsity via Trimmed group ℓ_1 penalty as

$$\mathcal{R}_l(oldsymbol{ heta}_l,oldsymbol{w}) = \lambda_l \sum_{j=1}^{n_{\mathsf{in}}} w_j \sqrt{ heta_{j,1}^2 + heta_{j,2}^2 + \cdots + heta_{j,n_{\mathsf{out}}}}$$

- Activation map sparsity (for convolutional layers)
 - Similarly, let $oldsymbol{ heta}_l \in \mathbb{R}^{C_{\mathsf{out}} imes C_{\mathsf{in}} imes H imes W}$ be a weight parameter, then

$$\mathcal{R}_l(\boldsymbol{\theta}, \boldsymbol{w}) = \lambda_l \sum_{j=1}^{C_{\text{out}}} w_j \sqrt{\sum_{m,n,k} \theta_{j,m,n,k}^2}$$

for all possible indices (m, n, k).

with the constraint $\mathbf{1}^T \boldsymbol{w} = n_{in} - h_l$ or $C_{out} - h_l$ respectively.

イロト イヨト イヨト イヨト

Applications to Deep Learning: Pruning Deep Networks Results on MNIST dataset

• Comparison with vanilla group ℓ_1 penalty vs. Trimmed group ℓ_1 penalty on LeNet-300-100 structure

Method	Pruned Model	Error (%)
No Regularization	784-300-100	1.6
grp ℓ_1	784-241-67	1.7
$\operatorname{grp} \ell_{1_{\operatorname{trim}}}, h = \operatorname{half} \operatorname{of} \operatorname{original}$	392-150-50	1.6

イロン イ団 とく ヨン イヨン

Applications to Deep Learning: Pruning Deep Networks Bayesian Neural Networks with Trimmed *l*₁ Regularization

• Most modern algorithms for network pruning are based on **Bayesian** variational framework. We propose a Bayesian neural network with Trimmed ℓ_1 regularization regarding only θ as Bayesian.

<ロト < 回 > < 回 > < 回 > < 回 >

Applications to Deep Learning: Pruning Deep Networks Bayesian Neural Networks with Trimmed l₁ Regularization

- Most modern algorithms for network pruning are based on **Bayesian** variational framework. We propose a Bayesian neural network with Trimmed ℓ_1 regularization regarding only θ as Bayesian.
- By relationship between **Bayesian neural networks** and variational dropout, we choose $q_{\theta,\alpha}(\theta_{i,j}) = \mathcal{N}(\phi_{i,j}, \alpha_{i,j}\phi_{i,j}^2)$ as a variational distribution.

< □ > < □ > < □ > < □ > < □ >

- Most modern algorithms for network pruning are based on **Bayesian** variational framework. We propose a Bayesian neural network with Trimmed ℓ_1 regularization regarding only θ as Bayesian.
- By relationship between **Bayesian neural networks** and variational dropout, we choose $q_{\theta,\alpha}(\theta_{i,j}) = \mathcal{N}(\phi_{i,j}, \alpha_{i,j}\phi_{i,j}^2)$ as a variational distribution.
- \bullet Combined with Trimmed ℓ_1 regularization, the objective is

$$\underbrace{\mathbb{E}_{q_{\phi,\alpha}(\boldsymbol{\theta})}\Big[-\mathcal{L}(\mathcal{W};\mathcal{D})\Big] + \mathbb{KL}(q_{\phi,\alpha}(\mathcal{W})\|p(\mathcal{W}))}_{\mathsf{ELBO}} + \underbrace{\mathbb{E}_{q_{\phi,\alpha}(\boldsymbol{\theta})}\Big[\sum_{l=1}^{L+1} \lambda_{l}\mathcal{R}_{l}(\boldsymbol{\theta}_{l},\boldsymbol{w}_{l})\Big]}_{\mathsf{Expected Trimmed group }\ell_{1} \text{ penalty}}$$

< □ > < □ > < □ > < □ > < □ >

Applications to Deep Learning: Pruning Deep Networks Results on MNIST dataset (Cont' d)

- With Bayesian extensions on LeNet-300-100
 - We compare with a smoothed ℓ_0 -norm under Bayesian variational framework proposed by Louizos et al. (2018)*

Method	Pruned Model	Error (%)
ℓ_0 (Louizos et al., 2018)	219-214-100	1.4
ℓ_0 , λ sep. (Louizos et al., 2018)	266-88-33	1.8
Bayes grp $\ell_{1_{\text{trim}}}, h = \ell_0$	219-214-100	1.4
Bayes grp $\ell_{1_{\text{trim}}}$, $h = \ell_0$, λ sep.	266-88-33	1.6
Bayes grp $\ell_{1_{\mathrm{trim}}}$, $h < \ell_0$, λ sep.	245-75-25	1.7

• With Bayesian extensions on LeNet-5-Caffe

Method	Pruned Model	Error (%)
ℓ_0 (Louizos et al., 2018)	20-25-45-462	0.9
ℓ_0, λ sep. (Louizos et al., 2018)	9-18-65-25	1.0
Bayes grp $\ell_{1_{\text{trim}}}, h < \ell_0$	20-25-45-150	0.9
Bayes grp $\ell_{1_{\text{trim}}}$, $h = \ell_0$, λ sep.	9-18-65-25	1.0
Bayes grp $\ell_{1_{\text{trim}}}$, $h < \ell_0$, λ sep.	8-17-53-19	1.0

*Louizos et al. Learning Sparse Neural Networks through ℓ_0 Regularization. ICLR, 2018

Jihun Yun (KAIST)

イロト イヨト イヨト イヨト

- High-dimensional *M*-estimators with Trimmed ℓ_1 penalty: Alleviate the bias incurred by the vanilla ℓ_1 penalty by leaving the *h* largest parameter entries penalty-free.
- Theoretical Results on support recovery and ℓ_2 -error hold for any local optima and are competitive with other non-convex regularizers.
- **Simulation experiments** demonstrated the value of approach compared to Lasso and non-convex penalties.
- Future work:
 - Trimming for other standard regularizers beyond sparsity
 - Bypassing incoherence condition in corollaries
 - More experiments and theories when RSC does not hold
 - Investigating the use of trimmed regularization in deep models.

< □ > < □ > < □ > < □ > < □ >

THANK YOU! Any Questions?

Poster Session at Pacific Ballroom #186 6:30pm – 9:00pm

Jihun Yun (KAIST)

Image: A math the second se