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Phase Synchronization

I Problem: Recover rotation
angles θ1, . . . , θn ∈ [0, 2π]
from noisy measurements
of their pairwise offsets

θij = θi − θj + noise

for some or all pairs of (i , j)

I Examples: Class averaging
in cryo-EM image analysis,
shape registration and
community detection



Phase Synchronization

I Setup: Phase vector z =
(
eιθ1 , . . . , eιθn

)> ∈ Cn
1, noisy

pairwise measurements in n-by-n Hermitian matrix

Hij =

{
eι(θi−θj) = zi z̄j with prob. r ∈ [0, 1]

Uniform (C1) with prob. 1− r

and Hij = Hji . This is known as a random corruption model.

I Goal: recover the true phase vector z (up to a global
multiplicative factor)

I Existing method: Rank-1 recovery (e.g. convex relaxations)

x̂ := arg min
x∈Cn

1

‖xx∗ − H‖2F ⇔ x̂ := arg max
x∈Cn

1

x∗Hx



Multi-Frequency Phase Synchronization

I Multi-Frequency Formulation:

max
x∈Cn

1

kmax∑
k=1

(xk)∗H(k)xk

where xk :=
(
xk1 , . . . , x

k
n

)> ∈ Cn
1, and H(k) is the n-by-n

Hermitian matrix with H
(k)
ij := Hk

ij

I Intuition: Matching higher trigonometric moments

I Two-stage Algorithm: (i) Good initialization (ii) Local
methods e.g. gradient descent or (generalized) power iteration



Initialization: Inspired by Harmonic Retrieval

I Fix kmax ≥ 1, build H(2), . . . ,H(kmax) out of H = H(1)

I For each k = 1, . . . , kmax, solve the subproblem

u(k) := arg max
v∈Cn

1

v∗H(k)v

using any convex relaxation, and set W (k) := u(k)
(
u(k)

)∗
I For all 1 ≤ i , j ≤ n, find the “peak location” of the

spectrogram

θ̂ij := arg max
φ∈[0,2π]

∣∣∣∣∣∣12
kmax∑

k=−kmax

W
(k)
ij e−ιkφ
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I Entrywise normalize the top eigenvector x̃ of Hermitian matrix

Ĥ, defined by Ĥij = eιθ̂ij , to get x̂ ∈ Cn
1



How well does it work? Evaluate correlation |Corr (x̂ , z)|

Random Corruption Model, r = λ/
√
n

Our Method: |Corr (x̂, z)| −→ 1

as kmax � 1, even for λ < 1!

Previous Art: Only ensures

|Corr (x̂, z)| > 1√
n

for λ > 1



Grounded Upon Solid Theory

Theorem (Gao & Zhao 2019). With all (mild) assumptions
satisfied, with high probability the multi-frequency phase
synchronization algorithm produces an estimate x̂ satisfying

Corr (x̂ , z) ≥ 1− C ′

k2max

provided that

kmax > max

5,
1

√
2π
(

1− 4C2σ
√

log n/n
)
− 2

 .

In particular, Corr (x̂ , z)→ 1 as kmax →∞.
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