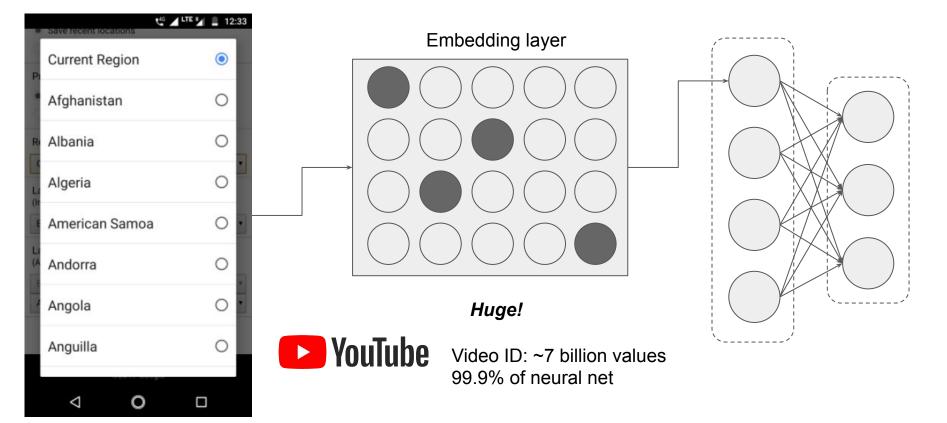
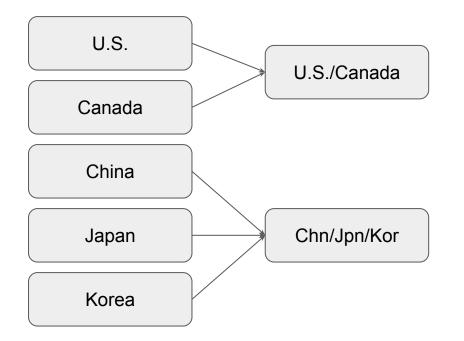
Categorical Feature Compression via Submodular Optimization


Mohammad Hossein Bateni, <u>Lin Chen</u>, Hossein Esfandiari, Thomas Fu, Vahab Mirrokni, and Afshin Rostamizadeh *Pacific Ballroom* #142


Why Vocabulary Compression?

Why Vocabulary Compression?

How to Compress Vocabulary?

How to Compress Vocabulary

Group similar feature values into one.

Good compression preserves *most information of labels*.

Supervised

Problem Formulation

Problem Formulation

		Compressed feature		Favorite fruit (label)	
#1843	#1843 China Ch		China/Japan/Korea		
#429	Japan	China/Japan/Korea			
#9077	Brazil	Bra	azil/Argentina		
Random variable X ∈ {Afghanistan, Albania, …, Zimbabwe}			Compressed feature f(X) ∈ {China/Japan/Korea, Brazil/Argentina, U.S./Canada}		Random variable C ∈ {pear, apple, , mango}

Max I(f(X); C)

s.t. f(X) can take at most *m* values

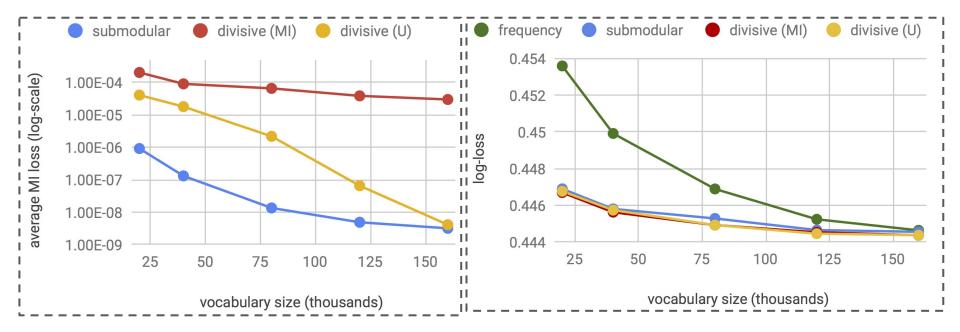
Our Results

Our Results

Max I(f(X); C)

s.t. f(X) can take at most *m* values There is a *quasi-linear* (O(n log n)) algorithm that achieves **63%** f(OPT) if label is *binary*.

• Design a new submodular function after re-parametrization


There is a log(n)-round distributed algorithm that achieves 63% f(OPT) with O(n/k) space per machine.

• *k* is # of machines

Reparametrization for Submodularity

- Sort feature values *x* according to *P(X=x|C=0)*.
- A problem of placing separators
- *I(f(X); C)* is a function of the set of separators.

Experiment Results

Pacific Ballroom #142 See you this evening