Outlier Channel Splitting Improving DNN Quantization without Retraining

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, Zhiru Zhang School of Electrical and Computer Engineering Cornell University

Cornell University

Specialized DNN Processors are Ubiquitous

Apple (A12) Samsung (Exynos 9820) Huawei (Kirin 970) Qualcomm (Hexagon) Cloud

Google (TPU) Microsoft (Brainwave) Xilinx (EC2 F1) Intel (FPGAs, Nervana) AWS Offerings

Embedded

Google (Edge TPU) Intel (Movidius) Deephi/Xilinx (Zynq) ARM (announced) Many Startups

Quantization is Key to Hardware Acceleration

Lower Precision \rightarrow less energy and area per op \rightarrow fewer bits of storage per data

FPGA Performance

https://developer.nvidia.com/tensorrt

E. Chung, J. Fowers et al. Serving DNNs in Real Time at Datacenter Scale with Project Brainwave, *IEEE Micro*, April 2018.

Data-Free Quantization

DNN quantization techniques that require training are discouraged by the current ML service model

Reasons to prefer data-free quantization:

- 1. ML providers typically cannot access customer training data
- 2. Customer is using a pre-trained off-the-shelf model
- 3. Customer is unwilling to retrain a legacy model
- 4. Customer lacks the expertise for quantization training

Paper Summary

- + Reduces quantization noise
- + Removes outliers
- Model size overhead
- OCS improves quantization without retraining
- OCS can outperform existing methods with negligible size overhead (<2%) in both CNNs and RNNs

0.1

We also perform a comprehensive evaluation of different clipping methods in literature

Outlier Channel Splitting

- OCS splits weights or activations, halving them
 - (a) Duplicate node y_2 to halve the weight v_2
 - (b) Duplicate weight v_2 to halve the activation y_2
 - Inspired by Net2Net, a paper on layer transformations

Quantization-Aware Splitting

Naïve Splitting (Net2Net)

 $w \to (\frac{w}{2}, \frac{w}{2})$

Halves round in the same direction

Quantization-Aware Splitting

$$w \to (\frac{w}{2} - \frac{\Delta}{4}, \frac{w}{2} + \frac{\Delta}{4})$$

Halves can round in opposite directions to help cancel out quantization noise

In the paper, we show that QA splitting preserves the expected quantization noise on a single value

Results on CNNs

	Network (Float Acc.)	Wt. Bits	Quantized Acc. (\pm vs. Best Clipping Result)	
			OCS	OCS + Clip
In these results OCS is constrained to ~2% size overhead. Blue = +1% or better Red = -1% or worse	VGG-16 BN (73.4)	6 5 4	+1.0 +3.3 -33.1	+0.5 +2.6 +4.4
	ResNet-50 (76.1)	6 5 4	+0.4 +2.0 -26.8	+0.5 +2.0 +4.2
	DenseNet-121 (74.4)	6 5 4	+1.6 +4.3 -5.1	+1.7 +5.3 +13.9
	Inception-V3 (75.9)	6 5 4	+5.6 +13.5 -1.4	+5.5 +19.5 +0.7

- OCS constrained to 2% overhead outperforms Clipping at 6-5 bits
- **OCS + Clipping** outperforms Clipping alone at 4 bits

Thank you!

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Zhiru Zhang. Improving Neural Network Quantization without Retraining using Outlier Channel Splitting. *ICML*, June 2019

Code available at: https://github.com/cornell-zhang/dnn-quant-ocs