

Fair Clustering

• Algorithmic Fairness

• Common Unsupervised Learning Task

©Petrina Chan/The Tufts Daily

• Further Implication: e.g., feature engineering

- Collection of n points P in \mathbb{R}^d
- Each point is colored either red or blue
- Each cluster S has to be (r,b)-balanced

$$\frac{b}{r} \le \frac{\# \operatorname{red} \operatorname{points} \operatorname{in} S}{\# \operatorname{blue} \operatorname{points} \operatorname{in} S} \le \frac{r}{b}$$

- Collection of n points P in \mathbb{R}^d
- Each point is colored either red or blue
- Each cluster S has to be (r,b)-balanced

$$\frac{b}{r} \le \frac{\# \operatorname{red} \operatorname{points} \operatorname{in} S}{\# \operatorname{blue} \operatorname{points} \operatorname{in} S} \le \frac{r}{b}$$

$(\mathbf{3}, \mathbf{2})$ -balanced

- Collection of n points P in \mathbb{R}^d
- Each point is colored either red or blue
- Each cluster S has to be (r,b)-balanced

$$\frac{b}{r} \le \frac{\# \operatorname{red} \operatorname{points} \operatorname{in} S}{\# \operatorname{blue} \operatorname{points} \operatorname{in} S} \le \frac{r}{b}$$

(**r**,**b**)-Fair *k*-median: Find *k* centers that partition *P* into (*r*,*b*)-balanced clusters s.t. average distance of points to their centers is minimized.

Fair Clustering Through Fairlets [Chierichetti et al]

• Fairlets: minimal sets that satisfy the (r,b)-balance requirement

Fair Clustering Through Fairlets [Chierichetti et al]

• Fairlets: minimal sets that satisfy the (r,b)-balance requirement

Outline of Algorithm [Chierichetti et al, NeurIPS'17]I. Compute an approximately optimal fairlet decomposition α -approxII. Cluster the centers of fairlets into k groups β -approxTheorem. The proposed algorithm is $O(\alpha + \beta)$ -approximation

Fair Clustering Through Fairlets [Chierichetti et al]

• Fairlets: minimal sets that satisfy the (r,b)-balance requirement

Outline of Algorithm [Chierichetti et al, NeurIPS'17]

I. Compute an approximately optimal fairlet decomposition α -approxII. Cluster the centers of fairlets into k groups β -approx

Theorem. The proposed algorithm is $O(\alpha + \beta)$ -approximation

Limitations: 1) Quadratic runtime in step

2) Only works for (t, 1)-balanced (t is an integer)

1. HST-embedding of points

1. HST-embedding of points

1. HST-embedding of points

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

- 1. HST-embedding of points
- 2. Top-down traversal + greedy fairlet construction

Theorem. $O(d \cdot \log n)$ -approx.

for fairlet-decomposition in $O(d \cdot n \cdot \log n)$ time

I. Runs in near-linear time

II. Works for all values of (r,b)

Empirical Results

Dataset	Balance	Fairlet Decomposition Cost	
		Previous Work*	Ours
Diabetes	0.8	~9836	2971
Bank	0.5	$\sim 5.46 \times 10^{5}$	5.24×10^{5}
Census	0.5	$\sim 3.59 \times 10^{7}$	2.41×10^{7}

*(Chierichetti et al., NeurIPS 2017)

Runtime scales **almost linearly** in the number of points while the **empirical quality** is as good as (Chierichetti et al., 2017)

Empirical Results

Dataset	Balance	Fairlet Decomposition Cost	
		Previous Work*	Ours
Diabetes	0.8	~9836	2971
Bank	0.5	$\sim 5.46 \times 10^{5}$	5.24×10^{5}
Census	0.5	$\sim 3.59 \times 10^{7}$	2.41×10^{7}

*(Chierichetti et al., NeurIPS 2017)

Runtime scales **almost linearly** in the number of points while the **empirical quality** is as good as (Chierichetti et al., 2017)

Thank You!

Poster: @6:30 pm - Pacific Ballroom #84