Sublinear Time Nearest Neighbor Search over Generalized Weighted Space

Yifan Lei **Qiang Huang** Mohan S. Kankanhalli Anthony K. H. Tung

School of Computing, National University of Singapore

Applications

- Nearest Neighbor Search (NNS) is widely used
- Example: booking hotel for ICML 2019
 - Considering the conditions to the convention centre, i.e., price, distance, and rating
 - Query q: a hotel that the user booked before and felt excellent
 - Weight vector w: different users have different preference to the hotel conditions, which lead to different choices of hotels

	Price	Distance	Rating
Hotel q	300	7	10

$$w = (0.001, 1, 1)$$
 → Hotel 2
 $w = (0, 1, 3)$ → Hotel 1
 $w = (0.001, -1, 1)$ → Hotel 3
 $w = (-0.001, -1, -1)$ → Hotel 4

	Price	Distance	Rating
Hotel 1	400	8	10
Hotel 2	350	6	8
Hotel 3	250	9	8
Hotel 4	200	6	6

Problem Definition

Given

- lacksquare A dataset $\mathcal D$ of n data objects in $\mathbb R^d$
- \square A query $q \in \mathbb{R}^d$ with a weight vector $w \in \mathbb{R}^d$
- ullet Measure: the Generalized Weighted Square Euclidean Distance (GWSED) d_w

$$d_w(o,q) = \sum_{i=1}^d w_i(o_i - q_i)^2$$

- Nearest Neighbor Search (NNS) over d_w
 - □ To find $o^* \in \mathcal{D}$ s.t. $o^* = \arg\min_{o \in \mathcal{D}} d_w(o, q)$
- This problem is very fundamental
 - ullet Furthest Neighbor Search (FNS) and MIPS can be reduced to NNS over d_w ,
 - i.e., $w_i = -1$, $\forall i \implies \arg\min_{o \in \mathcal{D}} d_w(o, q) = \arg\max_{o \in \mathcal{D}} \|o q\|$

Background and Motivations

- Locality-Sensitive Hashing (LSH)
 - Sublinear time for Near Neighbor Search
 - □ Insight: construct a hash function h s.t. Pr[h(o) = h(q)] is monotonic in Dist(o, q)
 - \Box Hidden condition: Dist(o,q) must be a metric
- LSH schemes cannot solve NNS over d_w directly (d_w is no longer a metric if $w_i < 0$)
- There is NO sublinear method for this problem
- Motivations
 - Similar to d_w , inner product (i.e., $o^T q$) is also *not* a metric
 - However, Shrivastava & Li (2014) introduced a *sublinear time* method based *Asymmetric LSH* which constructs P(o) and Q(q) for data objects $o \in \mathcal{D}$ and each query q, respectively.

Spherical Asymmetric Transformation

- Negative result:
 - □ There is no Asymmetric LSH family over \mathbb{R}^d for NNS over d_w (Lemma 1 and Theorem 2)
- Spherical Asymmetric Transformation (SphAT): $\mathbb{R}^d \to \mathbb{R}^{2d}$

$$P(o) = [COS(o); SIN(o)]$$

$$Q(q, w) = [w \otimes COS(q); w \otimes SIN(q)]$$

- where $w \otimes COS(q) = (w_1 \cos q_1, w_2 \cos q_2, ..., w_d \cos q_d)$
- Properties of SphAT:
 - $d_w(o,q) \sim \text{Euclidean distance}$ (or Angular distance) between P(o) and Q(q,w)
 - □ SphAT is weight-oblivious (because $P(\cdot)$ is independent of $w) \implies build index before q and w$

Two Proposed Methods

- SL-ALSH = SphAT + E2LSH
 - $\Rightarrow \text{SphAT: } \arg\min_{o \in \mathcal{D}} d_w(o, q) \Rightarrow \arg\min_{o \in \mathcal{D}} \|P(o) Q(q, w)\|$
 - ullet Apply E2LSH on P(o) and Q(q, w) for NNS over Euclidean distance
- S2-ALSH = SphAT + SimHash
 - □ SphAT: $\arg\min_{o \in \mathcal{D}} d_w(o, q) \Rightarrow \arg\max_{o \in \mathcal{D}} \frac{P(o)^T Q(q, w)}{\|P(o)\| \|Q(q, w)\|}$
 - ullet Apply SimHash on P(o) and Q(q,w) for NNS over Angular distance
- Main Results
 - $Pr[h(P(o)) = h(Q(q, w))] is monotonic in d_w(o, q) (Lemmas 3 and 4)$
 - \square SL-ALSH and S2-ALSH solve the problem of NNS over d_w with sublinear time (Theorems 3 and 4)

Datasets and Settings

Datasets

- \square Mnist (n = 60,000 and d = 784)
- \square Sift (n = 1,000,000 and d = 128)
- Movielens (n = 52,889 and d = 150)

Five types of weight vector w

Types	Illustrations	
Identical	All "1"	
Binary	Uniformly distributed in $\{0,1\}^d$	
Normal	d -dimensional normal distribution $\mathcal{N}(0,I)$	
Uniform	Uniformly distributed in $[0,1]^d$	
Negative	All "-1"	

Bucketing Experiments

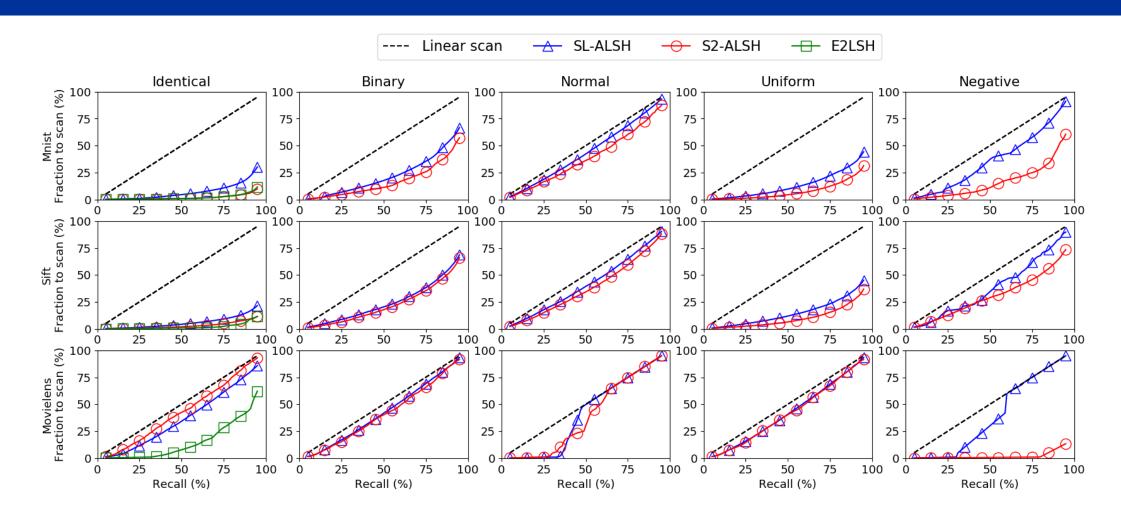


Figure: The best fraction of dataset to scan to achieve certain level of recalls (lower is better).

Conclusions

- Demonstrate that there is *no Asymmetric LSH family over* \mathbb{R}^d for the problem of NNS over d_w
- Introduce a novel SphAT from \mathbb{R}^d to \mathbb{R}^{2d}
 - SphAT is weight-oblivious
 - $Pr[h(P(o)) = h(Q(q, w))] is monotonic in d_w(o, q)$
- ullet Propose the first two *sublinear time* methods SL-ALSH and S2-ALSH for NNS over d_w
- Extensive experiments verify that SL-ALSH and S2-ALSH answer the NNS queries in sublinear time and support various types of weight vectors.

Poster Session

[Poster #82: Tue Jun 11th 06:30—09:00 PM @Pacific Ballroom]

Thank you for your attention!