Discovering Conditionally Salient Features with Statistical Guarantees

Jaime Roquero Gimenez, James Zou

Stanford University

Feature Selection

Setting the problem:

- Dataset with d features X_1, \ldots, X_d
- Response variable Y
- Goal: Find set of important variables $\mathcal{H}_1 \subset \{1, \ldots, d\}$

A variable $j \in \mathcal{H}_0$ is null (i.e. irrelevant for predicting Y) if

$$X_j \perp Y | \boldsymbol{X}_{-j}$$

Otherwise, we say that that $j \in \mathcal{H}_1$ is non-null.

- Construct a procedure that outputs an estimate \hat{S} of \mathcal{H}_1
- False Discovery Rate control as statistical guarantee:

$$\operatorname{FDR} = \mathbb{E}\Big[\frac{|\hat{S} \cap \mathcal{H}_0|}{|\hat{S}| \lor 1}\Big]$$

Feature Selection

Setting the problem:

- Dataset with d features X_1, \ldots, X_d
- Response variable Y
- Goal: Find set of important variables $\mathcal{H}_1 \subset \{1, \ldots, d\}$

A variable $j \in \mathcal{H}_0$ is null (i.e. irrelevant for predicting Y) if

$$X_j \perp Y | \boldsymbol{X}_{-j}$$

Otherwise, we say that that $j \in \mathcal{H}_1$ is non-null.

- Construct a procedure that outputs an estimate \hat{S} of \mathcal{H}_1
- False Discovery Rate control as statistical guarantee:

$$\operatorname{FDR} = \mathbb{E}\Big[\frac{|\hat{S} \cap \mathcal{H}_0|}{|\hat{S}| \vee 1}\Big]$$

Feature Selection

Setting the problem:

- Dataset with d features X_1, \ldots, X_d
- Response variable Y
- Goal: Find set of important variables $\mathcal{H}_1 \subset \{1, \ldots, d\}$

A variable $j \in \mathcal{H}_0$ is null (i.e. irrelevant for predicting Y) if

$$X_j \perp Y | \boldsymbol{X}_{-j}$$

Otherwise, we say that that $j \in \mathcal{H}_1$ is non-null.

- Construct a procedure that outputs an estimate \hat{S} of \mathcal{H}_1
- False Discovery Rate control as statistical guarantee:

$$FDR = \mathbb{E}\Big[\frac{|\hat{S} \cap \mathcal{H}_0|}{|\hat{S}| \vee 1}\Big]$$

Feature Selection in Linear Model

Fit a linear model to the data:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \dots + \beta_d X_d + \epsilon$$

Which variables are important? Those whose corresponding coefficients are non-zero.

 $eta_1,eta_3
eq 0 \Rightarrow 1,3\in\mathcal{H}_1$ $eta_2=eta_4=\cdots=eta_d=0\Rightarrow 2,4,\ldots,d\in\mathcal{H}_0$

In this model, non-null features are global non-nulls. We have $\mathcal{H}_1 = \{1, 3\}$, regardless of the value of X

Feature Selection in Linear Model

Fit a linear model to the data:

$$Y = \beta_0 + \frac{\beta_1 X_1}{\lambda_1} + \beta_2 X_2 + \frac{\beta_3 X_3}{\lambda_3} + \beta_4 X_4 + \dots + \beta_d X_d + \epsilon$$

Which variables are important? Those whose corresponding coefficients are non-zero.

 $\beta_1, \beta_3 \neq 0 \Rightarrow 1, 3 \in \mathcal{H}_1$ $\beta_2 = \beta_4 = \dots = \beta_d = 0 \Rightarrow 2, 4, \dots, d \in \mathcal{H}_0$

In this model, non-null features are global non-nulls. We have $\mathcal{H}_1 = \{1, 3\}$, regardless of the value of X

Feature Selection in Linear Model

Fit a linear model to the data:

$$Y = \beta_0 + \frac{\beta_1 X_1}{\lambda_1} + \beta_2 X_2 + \frac{\beta_3 X_3}{\lambda_3} + \beta_4 X_4 + \dots + \beta_d X_d + \epsilon$$

Which variables are important? Those whose corresponding coefficients are non-zero.

$$eta_1, eta_3
eq 0 \Rightarrow 1, 3 \in \mathcal{H}_1$$

 $eta_2 = eta_4 = \dots = eta_d = 0 \Rightarrow 2, 4, \dots, d \in \mathcal{H}_0$

In this model, non-null features are global non-nulls. We have $\mathcal{H}_1 = \{1, 3\}$, regardless of the value of X

Global vs. Local non-nulls

What if a feature is non-null **depending on the value of other features**?

$$\begin{cases} Y = X_2 + \epsilon & \text{if } X_1 > c \\ Y = X_3 + \epsilon & \text{if } X_1 \le c \end{cases}$$

$$Y \Rightarrow "\begin{cases} \mathcal{H}_1 = \{1, 2\} & \text{if } X_1 > c \\ \mathcal{H}_1 = \{1, 3\} & \text{if } X_1 \le c \end{cases}$$

From a global perspective, $\mathcal{H}_1 = \{1, 2, 3\}.$

Can we generate a procedure that selects non-null features **locally**, while retaining statistical guarantees? Potentially yes if model *interactions* in parametric models of Y|X. What if such models are not available?

Global vs. Local non-nulls

What if a feature is non-null **depending on the value of other features**?

$$\begin{cases} Y = X_2 + \epsilon & \text{if } X_1 > c \\ Y = X_3 + \epsilon & \text{if } X_1 \le c \end{cases}$$

" \Rightarrow "
$$\begin{cases} \mathcal{H}_1 = \{1, 2\} & \text{if } X_1 > c \\ \mathcal{H}_1 = \{1, 3\} & \text{if } X_1 \le c \end{cases}$$

From a global perspective, $\mathcal{H}_1 = \{1, 2, 3\}.$

Can we generate a procedure that selects non-null features **locally**, while retaining statistical guarantees? Potentially yes if model *interactions* in parametric models of Y|X. What if such models are not available?

Global vs. Local non-nulls

What if a feature is non-null **depending on the value of other features**?

$$\begin{cases} Y = X_2 + \epsilon & \text{if } X_1 > c \\ Y = X_3 + \epsilon & \text{if } X_1 \le c \end{cases}$$

"
$$\Rightarrow " \begin{cases} \mathcal{H}_1 = \{1, 2\} & \text{if } X_1 > c \\ \mathcal{H}_1 = \{1, 3\} & \text{if } X_1 \le c \end{cases}$$

From a global perspective, $\mathcal{H}_1 = \{1, 2, 3\}$.

Can we generate a procedure that selects non-null features **locally**, while retaining statistical guarantees? Potentially yes if model *interactions* in parametric models of Y|X. What if such models are not available?

Local Definition of Null Variable

A variable $j \in \mathcal{H}_0$ is null if

$X_{\boldsymbol{j}} \perp \!\!\!\perp Y | \boldsymbol{X}_{-j}$

We define / construct:

- the sets of *local nulls* $\mathcal{H}_0(\boldsymbol{x})$, *local non-nulls* $\mathcal{H}_1(\boldsymbol{x})$ at points in feature space
- a procedure to return a *local estimate* $\hat{S}(\boldsymbol{x})$ of the local non-nulls
- \bullet a generalization of FDR to a $local \ FDR$

How to retain *FDR* control in a local setting, without using a parametric model for $Y|\mathbf{X}$?

Local Definition of Null Variable

A variable $j \in \mathcal{H}_0(\boldsymbol{x})$ is a local null at $\boldsymbol{X} = \boldsymbol{x}$ if

 $X_j \perp Y | \boldsymbol{X}_{-j} = \boldsymbol{x}_{-j}$

We define / construct:

- the sets of *local nulls* $\mathcal{H}_0(\boldsymbol{x})$, *local non-nulls* $\mathcal{H}_1(\boldsymbol{x})$ at points in feature space
- a procedure to return a *local estimate* $\hat{S}(\boldsymbol{x})$ of the local non-nulls
- \bullet a generalization of FDR to a $local \ FDR$

How to retain FDR control in a local setting, without using a parametric model for Y|X?

Local Definition of Null Variable

A variable $j \in \mathcal{H}_0(\boldsymbol{x})$ is a local null at $\boldsymbol{X} = \boldsymbol{x}$ if

$$X_j \perp Y | \boldsymbol{X}_{-j} = \boldsymbol{x}_{-j}$$

We define / construct:

- the sets of *local nulls* $\mathcal{H}_0(\boldsymbol{x})$, *local non-nulls* $\mathcal{H}_1(\boldsymbol{x})$ at points in feature space
- a procedure to return a *local estimate* $\hat{S}(\boldsymbol{x})$ of the local non-nulls
- \bullet a generalization of FDR to a *local FDR*

How to retain *FDR control* in a *local* setting, without using a parametric model for Y|X?

Most feature selection procedures construct scores T_i for each feature:

$$X_1, X_2, \dots, X_d, \quad Y$$

$$\downarrow$$

$$T_1, T_2, \dots, T_d$$

Then scores are ranked and some cutoff leads to \hat{S} .

- Need a statistical model to have statistical guarantees on FDR
- If high-dimensional setting, statistical assumptions may fail.
- If wanted to do local feature selection, subsetting data could limit the power and break assumptions based on asymptotic behavior.

These limitations make local feature selection a hard problem for usual methods.

Most feature selection procedures construct scores T_i for each feature:

$$X_1, X_2, \dots, X_d, \quad Y$$

$$\downarrow$$

$$T_1, T_2, \dots, T_d$$

Then scores are ranked and some cutoff leads to \hat{S} .

- Need a statistical model to have statistical guarantees on FDR
- If high-dimensional setting, statistical assumptions may fail.
- If wanted to do local feature selection, subsetting data could limit the power and break assumptions based on asymptotic behavior.

These limitations make local feature selection a hard problem for usual methods.

The knockoff procedure generates a new, synthetic dataset \tilde{X} , and constructs scores as previously:

$$X_1, X_2, \dots, X_d, \tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_d, \quad Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_1, T_2, \dots, T_d, \quad \tilde{T}_1, \tilde{T}_2, \dots, \tilde{T}_d$$

Ranking the differences $W_j = T_j - \tilde{T}_j$ allows to select features with FDR control.

Does not require modeling $Y|\mathbf{X}$ for FDR control. Statistical guarantees only depend on the validity of the process to generate $\tilde{\mathbf{X}}$.

The knockoff procedure generates a new, synthetic dataset \tilde{X} , and constructs scores as previously:

$$X_1, X_2, \dots, X_d, \tilde{X}_1, \tilde{X}_2, \dots, \tilde{X}_d, \quad Y$$

$$\downarrow \qquad \qquad \downarrow$$

$$T_1, T_2, \dots, T_d, \quad \tilde{T}_1, \tilde{T}_2, \dots, \tilde{T}_d$$

Ranking the differences $W_j = T_j - \tilde{T}_j$ allows to select features with FDR control.

Does not require modeling Y|X for FDR control. Statistical guarantees only depend on the validity of the process to generate \tilde{X} .

Our work generalizes the Knockoff procedure to tackle local feature selection:

- Generalize the distributional properties of the knockoff variables \tilde{X} to the local setting, without additional constraints.
- Generalize the construction of the scores to capture local dependence.

By generating \tilde{X} as in the usual knockoff procedure, using the whole dataset, the statistical guarantees hold for the localized procedure.

Our work generalizes the Knockoff procedure to tackle local feature selection:

- Generalize the distributional properties of the knockoff variables \tilde{X} to the local setting, without additional constraints.
- Generalize the construction of the scores to capture local dependence.

By generating \tilde{X} as in the usual knockoff procedure, using the whole dataset, the statistical guarantees hold for the localized procedure.

Example: Switch variable model

Three switch features $X_{s_0}, X_{s_1}, X_{s_2}$ and four different sets of local non-nulls $S_{00}, S_{01}, S_{10}, S_{11}$. Y has a linear response in $X_{S_{ij}}$.

Local FDR control

Thank you