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Feature Selection

Setting the problem:
Dataset with d features X1, . . . , Xd

Response variable Y
Goal: Find set of important variables H1 ⊂ {1, . . . , d}

A variable j ∈ H0 is null (i.e. irrelevant for predicting Y ) if

Xj ⊥⊥ Y |X−j

Otherwise, we say that that j ∈ H1 is non-null.
Construct a procedure that outputs an estimate Ŝ of H1

False Discovery Rate control as statistical guarantee:

FDR = E
[ |Ŝ ∩H0|
|Ŝ| ∨ 1

]
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Feature Selection in Linear Model

Fit a linear model to the data:

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + · · ·+ βdXd + ε

Which variables are important? Those whose corresponding
coefficients are non-zero.

β1, β3 6= 0⇒ 1, 3 ∈ H1

β2 = β4 = · · · = βd = 0⇒ 2, 4, . . . , d ∈ H0

In this model, non-null features are global non-nulls. We have
H1 = {1, 3}, regardless of the value of X
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Global vs. Local non-nulls

What if a feature is non-null depending on the value of other
features? {

Y = X2 + ε if X1 > c

Y = X3 + ε if X1 ≤ c

”⇒ ”
{
H1 = {1, 2} if X1 > c

H1 = {1, 3} if X1 ≤ c

From a global perspective, H1 = {1, 2, 3}.
Can we generate a procedure that selects non-null features locally,
while retaining statistical guarantees? Potentially yes if model
interactions in parametric models of Y |X. What if such models are
not available?
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Local Definition of Null Variable

A variable j ∈ H0 is null if

Xj ⊥⊥ Y |X−j

We define / construct:
the sets of local nulls H0(x) , local non-nulls H1(x) at points in
feature space
a procedure to return a local estimate Ŝ(x) of the local non-nulls
a generalization of FDR to a local FDR

How to retain FDR control in a local setting, without using a
parametric model for Y |X?
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Knockoff Procedure

Most feature selection procedures construct scores Tj for each feature:

X1, X2, . . ., Xd, Y

↓
T1, T2, . . ., Td

Then scores are ranked and some cutoff leads to Ŝ.
Need a statistical model to have statistical guarantees on FDR
If high-dimensional setting, statistical assumptions may fail.
If wanted to do local feature selection, subsetting data could limit
the power and break assumptions based on asymptotic behavior.

These limitations make local feature selection a hard problem
for usual methods.
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Knockoff Procedure

The knockoff procedure generates a new, synthetic dataset X̃, and
constructs scores as previously:

X1, X2, . . ., Xd, X̃1, X̃2, . . . , X̃d, Y

↓ ↓
T1, T2, . . ., Td, T̃1, T̃2, . . . , T̃d

Ranking the differences Wj = Tj − T̃j allows to select features with
FDR control.
Does not require modeling Y |X for FDR control. Statistical guarantees
only depend on the validity of the process to generate X̃.
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Localize the Knockoff Procedure

Our work generalizes the Knockoff procedure to tackle local feature
selection:

Generalize the distributional properties of the knockoff variables
X̃ to the local setting, without additional constraints.
Generalize the construction of the scores to capture local
dependence.

By generating X̃ as in the usual knockoff procedure, using
the whole dataset, the statistical guarantees hold for the
localized procedure.
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Example: Switch variable model

Three switch features Xs0 , Xs1 , Xs2 and four different sets of local
non-nulls S00, S01, S10, S11. Y has a linear response in XSij .
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Local FDR control
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Thank you
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