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Big data era
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Outstanding performance of ML
- Usually trained over massive datasets
- Examples: MNIST (70k samples) and MovieLens (20M samples)

What about a small set of critical samples that best describes
an unknown model?



Related works
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Experiment design [Sacks-Welch-Mitchell-Wynn, 1989]
- to minimize total labeling cost
- different setting

Active learning [Settles, 2012]
- to minimize total labeling cost
- different setting

Core set selection [Tsang-Kwok-Cheung, 2005]
- to find a small representative dataset
- limited to SVM

Influence score [Koh-Liang, 2017]
- to understand the importance of every sample
- greedy: cannot score a set of samples



Our approach
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Conventional training: (`i: loss of sample i, N : dataset size, h:
parameterized function from space H)

minimize
h∈H

1
N

N∑
i=1

`i(h) .

Our proposal: (joint learning and data selection)

minimize
h∈H,z∈{0,1}N

1
1T z

N∑
i=1

zi`i(h), s. t. 1
N

N∑
i=1

`i(h) ≤ ε , 1T z ≥ K .

Maximum compression rate: 1−K/N
Solved efficiently using our proposed Alternating Data Selection and Function
Approximation algorithm
Under some regularity assumptions, K ≥ d(1 + 2LT

√
d/δ)de samples are

enough for learning an L-Lipschitz function defined on interval [0, T ]d with
arbitrary accuracy δ (δ ≤ ε)



Experimental results
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Illustrative example:
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Real-world data sets (from UCI repos.):
- experiments on Individual household electric power consumption (N =

1.5M , d = 9) and YearPredictionMSD (N = 463K, d = 90) datasets

- almost no loss in learning performance after 95% compression using our
approach



Final remarks
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Theoretically, almost 100% compressibility of big data is feasible without
a noticeable drop in the learning performance

Much faster training over the small representative dataset

Inefficiency of the existing approaches to create datasets (which lead to
a massive amounts of redundancy)

Applications:
- edge computing: reducing the communication overhead
- IoT: enabling low-latency learning and inference over a communication-
limited network

Visit our poster: Pacific Ballroom #170
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