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An MCTS setting

MDP with starting state x0 ∈ X , action space A

n interactions: At time t playing at in xt leads to
Deterministic dynamics g : xt+1 , g(xt , at),
Reward: rt(xt , at) + εt with εt being the noise

Objective: Recommend action a(n) that minimizes

rn , max
a∈A

Q?(x , a)− Q?(x , a(n)) simple regret

where Q?(x , a) , r(x , a) + supπ
∑
γtr(xt , π(xt))

Assumption: rt ∈ [0,Rmax] and |εt | ≤ b

Approach: Trying to explore without the parameters Rmax and b
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OLOP (Bubeck and Munos, 2010)

OLOP implements Optimistic Planning using Upper Confidence
Bound (UCB) on the Q value of a sequence of q actions a1, . . . , aq:

Q̂UCB
t (a1:q) ,

q∑
h=1

(
γh r̂h(t) + γhb

√
1

Tah(t)

)
︸ ︷︷ ︸

estimation of observed reward

+
Rmaxγ

q+1

1− γ︸ ︷︷ ︸
unseen reward

in optimization under a fixed budget n, excellent strategies
allocate samples to actions without knowing Rmax or b
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Tree Search
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This is a zero order optimization!
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Black-box optimization: use the partitioning
to explore f (uniformly)
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Zipf exploration: Open best n
h

cells at depth h
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Noisy case

• need to pull more each x to limit uncertainty

• tradeoff: the more you pull each x the shallower you can
explore
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Noisy case: StroquOOL (Bartlett et al. 2019)

At depth h:

• order the cells by decreasing value and

• open the i-th best cell with m = n
hi estimations
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Black-box optimization vs planning:
Reuse of samples and γ

Optimization Planning
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Lower regret for planning! (Bubeck & Munos 2010)
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Lower regret for planning! (Bubeck & Munos 2010)
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Black-box optimization vs. planning:
Reuse samples and take advantage of γ

Uniform exploration Zipf exploration
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Bubeck & Munos: Only for uniform strategies . . .
We figured the amount the samples needed!
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PlaTγPOOS

The power of PlaTγPOOS

• implements Zipf exploration for MCTS StroquOOL,

• explicitly pulls an action at depth h + 1, γ times less than
action at depth h, (Q?(x , a) = r(x , a) + supπ

∑
γtr(xt , π(xt)),

• does not use UCB & no use of Rmax and b,)

• improves over OLOP with adaptation to low noise and
additional unknown smoothness

• gets exponential speedups when no noise is present!
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