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Stochastic Optimization

First-Order Stochastic Optimization
Find the minimum of some convex function F : W → R using a
stochastic gradient oracle: given w we can obtain a random variable
g where E[g] = ∇F (w).



Example: Stochastic Gradient Descent

A popular algorithm is gradient descent:

w1 = 0

wt+1 = wt − ηtgt

How should we analyze its convergence?
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Online Optimization

For t = 1 . . . T , repeat:

1. Learner chooses a point wt .

2. Environment presents learner with a gradient gt (think
E[gt ] = ∇F (wt)).

3. Learner su�ers loss 〈gt ,wt〉.
The objective is minimize regret:

RT (w?) =
T∑

t=1

〈gt ,wt〉︸ ︷︷ ︸
loss su�ered

− 〈gt ,w?〉︸ ︷︷ ︸
benchmark loss



Back to Gradient Descent

wt+1 = wt − ηtgt

Simplest analysis chooses ηt ∝ 1/
√
T , but can also do more

complicated things like ηt ∝ 1√∑T
t=1 ‖gt‖2

.

These yield

RT (w?) ≤ ‖w?‖
√
T

RT (w?) ≤ ‖w?‖

√√√√ T∑
t=1

‖gt‖2

We want to use regret bounds to solve stochastic optimization.
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What Could Happen Instead



Online-to-Batch Conversion

I Run an online learner for T steps on gradients E[gt ] = ∇F (wt).
I Pick ŵ = 1

T

∑T
t=1 wt .

I E[F (ŵ)− F (w?)] ≤ E[RT (w?)]
T

I For example: ‖w?‖
√∑T

t=1 ‖gt‖2
T = O(1/

√
T ).
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Averages Converge



Something That Could Be Be�er

I The conversion is not “anytime”: you must stop and average in
order to get a convergence guarantee.

I The iterates wt are still not well-behaved. For example,
‖∇F (wT )‖ may be much larger than ‖∇F (ŵ)‖.



Simple Fix

Just evaluate gradients at running averages!
I Let xt = 1

t

∑t
i=1 wi

I Let gt be stochastic gradient at xt .
I Send gt to online learner and get wt+1.



Using Running Averages



Notation Recap

I xt : where we evaluate gradients gt .
I wt : iterate of online learner (now exists only for analysis).
I RT (w?) =

∑T
t=1〈gt ,wt − w?〉.

No longer clear what the relationship is between RT and the original
loss function F since gt is no longer a gradient at wt .



Online-To-Batch is unchanged

Theorem
Define

RT (x?) =
T∑

t=1

〈αtgt ,wt − x?〉

xt =

∑t
i=1 αiwi∑t
i=1 αi

Then for all x? and all T ,

E[F (xT )− F (x?)] ≤ E

[
RT (x?)∑T
t=1 αt

]



Proof Sketch

Suppose αt = 1 for simplicity.

E

[
T∑

t=1

F (xt)− F (x?)

]
≤ E

[
T∑

t=1

〈gt , xt − x?〉

]

≤ E

 T∑
t=1

〈gt , xt − wt︸ ︷︷ ︸
(t−1)(xt−1−xt)

〉+ 〈gt ,wt − x?〉︸ ︷︷ ︸
RT (x?)


≤ E

[
RT (x?) +

T∑
t=1

(t − 1)(F (xt−1)− F (xt))

]

Subtract
∑T

t=1 F (xt) from both sides, and telescope.



Stability

It’s clear that F (xt)→ F (x?). But (in a bounded domain) we also
have:

xt − xt−1 =
αt(xt − wt)∑t−1

i=1 αi
= O(1/t)

In contrast, the iterates of the base online learner are less stable:
wt − wt−1 = O(1/

√
t) usually (because learning rate ηt ∝ 1/

√
t).



An Algorithm That Likes Stability

Optimistic online learning algorithms can obtain [RS13; HK10;
MY16]:

RT (w?) ≤

√√√√ T∑
t=1

‖gt − gt−1‖2

I This algorithm does be�er if the gradients are stable.

I When F is smooth, then gradient stability is implied by iterate
stability!
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Using Optimism with Stability

I With previous conversion, we might hope that
wt − wt−1 = O(1/

√
t). This implies

E[F (ŵT )− F (x?)] ≤ O
(
1
T
+

σ√
T

)
I In the new conversion, gt − gt−1 ≈ xt − xt−1 = O(1/t), so we

can do much be�er.



Faster Rates with Optimism

Theorem
Suppose

RT (x?) ≤

√√√√ T∑
t=1

α2
t ‖gt − gt−1‖2

Set αt = t for all t. Suppose each gt has variance at most σ2, and F is
L-smooth. Then

E[F (xT )− F (x?)] ≤ O
(

L
T 3/2

+
σ√
T

)



Acceleration

The optimal rate is

E[F (xT )− F (x?)] ≤
L
T 2 +

σ√
T

I A small change to the algorithm can get this rate too.
I The algorithm does not know L or σ.
I Unfortunately, the algebra no longer fits on a slide.
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Online-to-Batch Summary

I Evaluate gradients at running averages.
I Keeps the same convergence guarantee, but is anytime.
I Stabilizes the iterates −→ faster rates on smooth problems.

Thank you!
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